The motivic Igusa zeta function of a space monomial curve with a plane semigroup

Abstract In this article, we compute the motivic Igusa zeta function of a space monomial curve that appears as the special fiber of an equisingular family whose generic fiber is a complex plane branch. To this end, we determine the irreducible components of the jet schemes of such a space monomial curve. This approach does not only yield a closed formula for the motivic zeta function, but also allows to determine its poles. We show that, while the family of the jet schemes of the fibers is not flat, the number of poles of the motivic zeta function associated with the space monomial curve is equal to the number of poles of the motivic zeta function associated with a generic curve in the family.

[1]  W. Veys,et al.  The monodromy conjecture for zeta functions associated to ideals in dimension two , 2009, 0910.2179.

[2]  Xu Chen,et al.  POLES OF MAXIMAL ORDER OF MOTIVIC ZETA FUNCTIONS , 2014, 1403.6792.

[3]  J. Denef,et al.  Caractristiques dEuler-Poincar, fonctions zta locales et modifications analytiques , 1992 .

[4]  Oscar Zariski,et al.  The moduli problem for plane branches , 2006 .

[5]  Bernard Teissier,et al.  Resolving Singularities of Plane Analytic Branches with one Toric Morphism , 2000 .

[6]  IMPANGA lecture notes on log canonical thresholds , 2011, 1107.2676.

[7]  Thomas Cauwbergs Splicing motivic zeta functions , 2014, 1411.0499.

[8]  T. Moh,et al.  Newton-Puiseux expansion and generalized Tschrinhausen transformation. II. , 1973 .

[9]  A. Némethi,et al.  Monodromy eigenvalues are induced by poles of zeta functions: the irreducible curve case , 2010 .

[10]  On a Question of B. Teissier , 2012, 1208.3173.

[11]  M. Spivakovsky,et al.  VALUATIONS IN FUNCTION FIELDS OF SURFACES , 1990 .

[12]  A. Weil,et al.  Sur la formule de Siegel dans la théorie des groupes classiques , 1965 .

[13]  T. Moh,et al.  Newton-Puiseux expansion and generalized Tschirnhausen transformation. I. , 1973 .

[14]  H. Mourtada,et al.  JET SCHEMES OF QUASI-ORDINARY SURFACE SINGULARITIES , 2017, Nagoya Mathematical Journal.

[15]  János Kollár,et al.  Singularities of Pairs , 1996, alg-geom/9601026.

[16]  B. Teissier,et al.  Overweight deformations of affine toric varieties and local uniformization , 2014, 1401.5204.

[17]  Bart Bories,et al.  Igusa's p-adic local zeta function and the Monodromy Conjecture for non-degenerated surface singularities , 2013, 1306.6012.

[18]  Motivic Igusa zeta functions , 1998, math/9803040.

[19]  F. Aroca,et al.  Torical modification of Newton non-degenerate ideals , 2012, 1209.5104.

[20]  Maximiliano Leyton-'Alvarez Deforming spaces of m-jets of hypersurfaces singularities , 2015, Journal of Algebra.

[21]  Mircea Mustata,et al.  Singularities of pairs via jet schemes , 2001 .

[22]  J. Igusa,et al.  Complex powers and asymptotic expansions. I. Functions of certain types. , 1974 .

[23]  H. Mourtada Jet schemes of complex plane branches and equisingularity , 2010, 1009.5845.

[24]  F. Loeser Fonctions D'Igusa p-adiques et Polynomes de Berstein , 1988 .

[25]  ZETA FUNCTIONS FOR ANALYTIC MAPPINGS, LOG-PRINCIPALIZATION OF IDEALS, AND NEWTON POLYHEDRA , 2006, math/0601336.

[26]  W. Veys,et al.  Note on the monodromy conjecture for a space monomial curve with a plane semigroup , 2019, Comptes Rendus. Mathématique.

[27]  Jenia Tevelev Compactifications of subvarieties of tori , 2004 .

[28]  On Igusa zeta functions of monomial ideals , 2005, math/0509243.

[29]  Jet schemes of normal toric surfaces , 2017 .

[30]  H. Mourtada,et al.  Jet schemes and minimal embedded desingularization of plane branches , 2013 .