Biased landscapes for random constraint satisfaction problems

The typical complexity of Constraint Satisfaction Problems (CSPs) can be investigated by means of random ensembles of instances. The latter exhibit many threshold phenomena besides their satisfiability phase transition, in particular a clustering or dynamic phase transition (related to the tree reconstruction problem) at which their typical solutions shatter into disconnected components. In this paper we study the evolution of this phenomenon under a bias that breaks the uniformity among solutions of one CSP instance, concentrating on the bicoloring of k-uniform random hypergraphs. We show that for small k the clustering transition can be delayed in this way to higher density of constraints, and that this strategy has a positive impact on the performances of Simulated Annealing algorithms. We characterize the modest gain that can be expected in the large k limit from the simple implementation of the biasing idea studied here. This paper contains also a contribution of a more methodological nature, made of a review and extension of the methods to determine numerically the discontinuous dynamic transition threshold.

[1]  Guilhem Semerjian,et al.  On the Freezing of Variables in Random Constraint Satisfaction Problems , 2007, ArXiv.

[2]  Elchanan Mossel,et al.  Robust reconstruction on trees is determined by the second eigenvalue , 2004, math/0406447.

[3]  Federico Ricci-Tersenghi,et al.  Random Formulas Have Frozen Variables , 2009, SIAM J. Comput..

[4]  Konstantinos Panagiotou,et al.  Catching the k-NAESAT threshold , 2011, STOC '12.

[5]  H. Kesten,et al.  Additional Limit Theorems for Indecomposable Multidimensional Galton-Watson Processes , 1966 .

[6]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[7]  Allan Sly,et al.  Communications in Mathematical Physics Reconstruction of Random Colourings , 2009 .

[8]  Andrea Montanari,et al.  Solving Constraint Satisfaction Problems through Belief Propagation-guided decimation , 2007, ArXiv.

[9]  Federico Ricci-Tersenghi,et al.  On the solution-space geometry of random constraint satisfaction problems , 2006, STOC '06.

[10]  Cristopher Moore,et al.  Random k-SAT: Two Moments Suffice to Cross a Sharp Threshold , 2003, SIAM J. Comput..

[11]  R. Zecchina,et al.  Bicoloring Random Hypergraphs , 2003, cond-mat/0306369.

[12]  Andrea Montanari,et al.  Gibbs states and the set of solutions of random constraint satisfaction problems , 2006, Proceedings of the National Academy of Sciences.

[13]  E. Aurell,et al.  Behavior of heuristics on large and hard satisfiability problems. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  William T. Freeman,et al.  Understanding belief propagation and its generalizations , 2003 .

[15]  S Cocco,et al.  Trajectories in phase diagrams, growth processes, and computational complexity: how search algorithms solve the 3-satisfiability problem. , 2001, Physical review letters.

[16]  M. Mézard,et al.  Analytic and Algorithmic Solution of Random Satisfiability Problems , 2002, Science.

[17]  F. Ricci-Tersenghi,et al.  Erratum: Diluted mean-field spin-glass models at criticality , 2014, 1401.1729.

[18]  Elchanan Mossel,et al.  Information flow on trees , 2001, math/0107033.

[19]  Giorgio Parisi,et al.  The backtracking survey propagation algorithm for solving random K-SAT problems , 2015, Nature Communications.

[20]  Allan Sly,et al.  Reconstruction of colourings without freezing , 2016, 1610.02770.

[21]  A. COJA-OGHLAN,et al.  Walksat Stalls Well Below Satisfiability , 2016, SIAM J. Discret. Math..

[22]  Guilhem Semerjian,et al.  Phase transitions in the q-coloring of random hypergraphs , 2017, ArXiv.

[23]  Monasson Structural glass transition and the entropy of the metastable states. , 1995, Physical Review Letters.

[24]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[25]  Riccardo Zecchina,et al.  Survey propagation as local equilibrium equations , 2003, ArXiv.

[26]  Tobias J. Hagge,et al.  Physics , 1929, Nature.

[27]  M. Mézard,et al.  Threshold values of random K-SAT from the cavity method , 2006 .

[28]  Allan Sly,et al.  Satisfiability Threshold for Random Regular nae-sat , 2013, Communications in Mathematical Physics.

[29]  Carlo Baldassi,et al.  Local entropy as a measure for sampling solutions in Constraint Satisfaction Problems , 2015 .

[30]  M. Mézard,et al.  The Cavity Method at Zero Temperature , 2002, cond-mat/0207121.

[31]  Martin J. Wainwright,et al.  A new look at survey propagation and its generalizations , 2004, SODA '05.

[32]  D. Thouless,et al.  Stability of the Sherrington-Kirkpatrick solution of a spin glass model , 1978 .

[33]  Bart Selman,et al.  Noise Strategies for Improving Local Search , 1994, AAAI.

[34]  Madhu Sudan,et al.  Performance of Sequential Local Algorithms for the Random NAE-K-SAT Problem , 2017, SIAM J. Comput..

[35]  Rémi Monasson,et al.  2+p-SAT: Relation of typical-case complexity to the nature of the phase transition , 1999, Random Struct. Algorithms.

[36]  Florent Krzakala,et al.  Phase Transitions in the Coloring of Random Graphs , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Elchanan Mossel Reconstruction on Trees: Beating the Second Eigenvalue , 2001 .

[38]  John Franco,et al.  Probabilistic analysis of the Davis Putnam procedure for solving the satisfiability problem , 1983, Discret. Appl. Math..

[39]  Amin Coja-Oghlan,et al.  The Decimation Process in Random k-SAT , 2012, SIAM J. Discret. Math..

[40]  X. Deng,et al.  BBX21, an Arabidopsis B-box protein, directly activates HY5 and is targeted by COP1 for 26S proteasome-mediated degradation , 2016, Proceedings of the National Academy of Sciences.

[41]  Constantino Tsallis,et al.  Optimization by Simulated Annealing: Recent Progress , 1995 .

[42]  Guilhem Semerjian,et al.  On the cavity method for decimated random constraint satisfaction problems and the analysis of belief propagation guided decimation algorithms , 2009, ArXiv.

[43]  R. Monasson,et al.  Relaxation and metastability in a local search procedure for the random satisfiability problem. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Florent Krzakala,et al.  Reweighted Belief Propagation and Quiet Planting for Random K-SAT , 2012, J. Satisf. Boolean Model. Comput..

[45]  Christian Borgs,et al.  Unreasonable effectiveness of learning neural networks: From accessible states and robust ensembles to basic algorithmic schemes , 2016, Proceedings of the National Academy of Sciences.

[46]  Alan M. Frieze,et al.  Analyzing Walksat on Random Formulas , 2011, ANALCO.

[47]  M. Sellitto,et al.  Generating dense packings of hard spheres by soft interaction design , 2018, SciPost Physics.

[48]  Riccardo Zecchina,et al.  Survey propagation: An algorithm for satisfiability , 2002, Random Struct. Algorithms.

[49]  M. Mézard,et al.  Reconstruction on Trees and Spin Glass Transition , 2005, cond-mat/0512295.

[50]  A. Montanari,et al.  Rigorous Inequalities Between Length and Time Scales in Glassy Systems , 2006, cond-mat/0603018.

[51]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[52]  A. Montanari,et al.  On the Dynamics of the Glass Transition on Bethe Lattices , 2005, cond-mat/0509366.

[53]  Andrea Montanari,et al.  Reconstruction and Clustering in Random Constraint Satisfaction Problems , 2011, SIAM J. Discret. Math..

[54]  Samuel Hetterich,et al.  Analysing Survey Propagation Guided Decimation on Random Formulas , 2016, ICALP.

[55]  Pekka Orponen,et al.  Circumspect descent prevails in solving random constraint satisfaction problems , 2007, Proceedings of the National Academy of Sciences.

[56]  Florent Krzakala,et al.  Phase Transitions and Computational Difficulty in Random Constraint Satisfaction Problems , 2007, ArXiv.

[57]  Amin Coja-Oghlan,et al.  Algorithmic Barriers from Phase Transitions , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[58]  Riccardo Zecchina,et al.  Entropy landscape and non-Gibbs solutions in constraint satisfaction problems , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[59]  John V. Franco Results related to threshold phenomena research in satisfiability: lower bounds , 2001, Theor. Comput. Sci..

[60]  Guilhem Semerjian,et al.  Typology of phase transitions in Bayesian inference problems , 2018, Physical review. E.

[61]  Dimitris Achlioptas,et al.  Lower bounds for random 3-SAT via differential equations , 2001, Theor. Comput. Sci..

[62]  Michael Molloy,et al.  Frozen variables in random boolean constraint satisfaction problems , 2012, SODA.

[63]  Allan Sly,et al.  Proof of the Satisfiability Conjecture for Large k , 2014, STOC.

[64]  F. Krzakala,et al.  Generalization of the cavity method for adiabatic evolution of Gibbs states , 2010, 1003.2748.

[65]  Rémi Monasson,et al.  THE EUROPEAN PHYSICAL JOURNAL B c○ EDP Sciences , 1999 .

[66]  Lenka Zdeborová,et al.  The condensation transition in random hypergraph 2-coloring , 2011, SODA.

[67]  Andrea Montanari,et al.  Clusters of solutions and replica symmetry breaking in random k-satisfiability , 2008, ArXiv.

[68]  Guilhem Semerjian,et al.  The large deviations of the whitening process in random constraint satisfaction problems , 2016, ArXiv.

[69]  Amin Coja-Oghlan A Better Algorithm for Random k-SAT , 2010, SIAM J. Comput..

[70]  Amin Coja-Oghlan,et al.  A positive temperature phase transition in random hypergraph 2-coloring , 2014, ArXiv.

[71]  Amin Coja-Oghlan A Better Algorithm for Random k-SAT , 2009, ICALP.

[72]  M. Mézard,et al.  The Bethe lattice spin glass revisited , 2000, cond-mat/0009418.

[73]  Christos H. Papadimitriou,et al.  Computational complexity , 1993 .