Tailoring of microstructure in hydrogenated nanocrystalline Si thin films by ICP-assisted RF magnetron sputtering

Utilizing plasma-assisted deposition by combining an RF magnetron and an inductively coupled plasma (ICP) source it is possible to fabricate highly crystallized nc-Si:H films at a relatively low substrate temperature (300 °C). Microstructural analysis reveals enhancement in crystallinity along with (2 2 0) preferential orientation throughout the depth of the film. The possible mechanism of crystallinity enhancement and preferential orientation is presented on the basis of plasma diagnostics using optical emission spectroscopy and various film analysis tools. This work also reports the effectiveness of the ICP source and elevated temperature for the control of film microstructure and crystallinity.

[1]  M. Hori,et al.  Utility of dual frequency hybrid source for plasma and radical generation in plasma enhanced chemical vapor deposition process , 2015 .

[2]  M. Hori,et al.  Effectiveness of hydrogen dilution for designing amorphous to crystalline Si thin film in inductively coupled plasma assisted magnetron sputtering , 2015 .

[3]  K. Shin,et al.  Plasma diagnostic approach for high rate nanocrystalline Si synthesis in RF/UHF hybrid plasmas using a PECVD process , 2015 .

[4]  M. Hori,et al.  Experimental evidence of warm electron populations in magnetron sputtering plasmas , 2015 .

[5]  M. Hori,et al.  Langmuir probe and optical emission spectroscopy studies in magnetron sputtering plasmas for Al-doped ZnO film deposition , 2015 .

[6]  N. Andersen,et al.  High rate amorphous and crystalline silicon formation by pulsed DC magnetron sputtering deposition for photovoltaics , 2015 .

[7]  Do Yun Kim,et al.  Effect of substrate morphology slope distributions on light scattering, nc-Si:H film growth, and solar cell performance. , 2014, ACS applied materials & interfaces.

[8]  D. Das,et al.  Spectroscopic and microscopic studies of self-assembled nc-Si/a-SiC thin films grown by low pressure high density spontaneous plasma processing. , 2014, Physical chemistry chemical physics : PCCP.

[9]  M. Hori,et al.  Effectiveness of plasma diagnostic in ultra high frequency and radio frequency hybrid plasmas for synthesis of silicon nitride film at low temperature , 2014 .

[10]  D. Das,et al.  Low temperature plasma processing of nc-Si/a-SiNx:H QD thin films with high carrier mobility and preferred (220) crystal orientation: a promising material for third generation solar cells , 2014 .

[11]  Jianmin Chen,et al.  Low temperature magnetron sputtering deposition of hydrogenated microcrystalline silicon thin films without amorphous incubation layers on glass , 2014 .

[12]  P. Guittienne,et al.  Industrial plasmas in academia , 2014 .

[13]  S. Pizzini Advanced Silicon Materials for Photovoltaic Applications: Pizzini/Advanced Silicon Materials for Photovoltaic Applications , 2012 .

[14]  K. Shin,et al.  Nano-crystalline silicon thin films grown by the inductively coupled plasma assisted CFUBM at low temperature , 2010 .

[15]  E. Alves,et al.  Effect of grain size and hydrogen passivation on the electrical properties of nanocrystalline silicon films , 2010 .

[16]  M. Mozetič,et al.  Customizing electron confinement in plasma-assembled Si/AlN nanodots for solar cell applications , 2009 .

[17]  K. Ostrikov,et al.  Structural evolution of nanocrystalline silicon thin films synthesized in high-density, low-temperature reactive plasmas , 2009, Nanotechnology.

[18]  K. Sasaki,et al.  Mechanism of Hydrogenated Microcrystalline Si Film Deposition by Magnetron Sputtering Employing a Si Target and H2/Ar Gas Mixture , 2009 .

[19]  Jason Holm Surface modification of hydrogen-terminated silicon nanoparticles. , 2009 .

[20]  M. Aoucher,et al.  Hydrogenated amorphous silicon deposited by pulsed DC magnetron sputtering. Deposition temperature effect , 2008 .

[21]  R. Opila,et al.  Role of hydrogen bonding environment in a-Si:H films for c-Si surface passivation , 2008 .

[22]  A. Biaggi-Labiosa,et al.  Nanocrystalline silicon as the light emitting material of a field emission display device , 2008, Nanotechnology.

[23]  K. Zellama,et al.  Low-temperature growth of nanocrystalline silicon films prepared by RF magnetron sputtering: Structural and optical studies , 2008 .

[24]  Jeffrey T. Roberts,et al.  Surface chemistry of aerosolized silicon nanoparticles: evolution and desorption of hydrogen from 6-nm diameter particles. , 2007, Journal of the American Chemical Society.

[25]  A. Kolodziej,et al.  Staebler-Wronski effect in amorphous silicon and its alloys , 2004 .

[26]  R. Biswas,et al.  H Evolution from Nano-Crystalline Silicon- Comparison of Simulation and Experiment , 2004 .

[27]  Nicolas Wyrsch,et al.  Material and solar cell research in microcrystalline silicon , 2003 .

[28]  J. Rath,et al.  Low temperature polycrystalline silicon: a review on deposition, physical properties and solar cell applications , 2003 .

[29]  Arup Dasgupta,et al.  Effects of substrate temperature on structural properties of undoped silicon thin films , 2002 .

[30]  S. Charvet,et al.  Nanocrystalline silicon thin films prepared by radiofrequency magnetron sputtering , 2002 .

[31]  R. D. Tarey,et al.  UNDERSTANDING PLASMA SOURCES , 2002 .

[32]  R. Brenot,et al.  Contribution of ions to the growth of amorphous, polymorphous, and microcrystalline silicon thin films , 2000 .

[33]  S. Yamasaki,et al.  Microscopic structure of defects in microcrystalline silicon , 2000 .

[34]  M. Hatalis,et al.  Thin film transistors in low temperature as-deposited and reduced-crystallization-time polysilicon on 665°C strain point glass substrates , 1999 .

[35]  J. Werner,et al.  Nucleation and Growth of Crystalline Silicon Films on Glass for Solar Cells , 1998 .

[36]  J. Andreu,et al.  New features of the layer‐by‐layer deposition of microcrystalline silicon films revealed by spectroscopic ellipsometry and high resolution transmission electron microscopy , 1996 .

[37]  Y. Mishima,et al.  Polycrystalline silicon formed by ultrahigh‐vacuum sputtering system , 1995 .

[38]  Nelson,et al.  Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon. , 1992, Physical review. B, Condensed matter.

[39]  M. Cardona,et al.  Raman scattering in pure and hydrogenated amorphous germanium and silicon , 1979 .