Pushed to extremes: distinct effects of high temperature vs. pressure on the structure of an atypical phosphatase

Protein function hinges on small shifts of three-dimensional structure. Elevating temperature or pressure may provide experimentally accessible insights into such shifts, but the effects of these distinct perturbations on protein structures have not been compared in atomic detail. To quantitatively explore these two axes, we report the first pair of structures at physiological temperature vs. high pressure for the same protein, STEP (PTPN5). We show that these perturbations have distinct and surprising effects on protein volume, patterns of ordered solvent, and local backbone and side-chain conformations. This includes novel interactions between key catalytic loops only at physiological temperature, and a distinct conformational ensemble for another active-site loop only at high pressure. Strikingly, in torsional space, physiological temperature shifts STEP toward previously reported active-like states, while high pressure shifts it toward a previously uncharted region. Together, our work argues that temperature and pressure are complementary, powerful, fundamental macromolecular perturbations.

[1]  Vincent A. Voelz,et al.  Structure-Based Experimental Datasets for Benchmarking of Protein Simulation Force Fields , 2023, 2303.11056.

[2]  H. Ginn Torsion angles to map and visualize the conformational space of a protein , 2023, bioRxiv.

[3]  D. Shaw,et al.  A Conserved Local Structural Motif Controls the Kinetics of PTP1B Catalysis , 2020, bioRxiv.

[4]  F. von Delft,et al.  Room-temperature crystallography reveals altered binding of small-molecule fragments to PTP1B , 2022, bioRxiv.

[5]  D. Keedy,et al.  The temperature-dependent conformational ensemble of SARS-CoV-2 main protease (Mpro) , 2022, IUCrJ.

[6]  T. Prangé,et al.  Comparative study of the effects of high hydrostatic pressure per se and high argon pressure on urate oxidase ligand stabilization. , 2022, Acta crystallographica. Section D, Structural biology.

[7]  Pedro E. M. Lopes,et al.  Equilibria between conformational states of the Ras oncogene protein revealed by high pressure crystallography , 2022, Chemical Science.

[8]  G. Evans,et al.  DIALS as a toolkit , 2021, Protein science : a publication of the Protein Society.

[9]  Saulo H. P. de Oliveira,et al.  Ligand binding remodels protein side chain conformational heterogeneity , 2021, bioRxiv.

[10]  D. Mobley,et al.  Temperature artifacts in protein structures bias ligand-binding predictions , 2021, Chemical science.

[11]  K. Gardner,et al.  Volume and Compressibility Differences Between Protein Conformations Revealed by High-Pressure NMR. , 2021, Biophysical journal.

[12]  M. Fischer Macromolecular room temperature crystallography , 2021, Quarterly Reviews of Biophysics.

[13]  D. Herschlag,et al.  Instrumentation and experimental procedures for robust collection of X-ray diffraction data from protein crystals across physiological temperatures. , 2020, Journal of applied crystallography.

[14]  C. Kalodimos,et al.  Conformational states dynamically populated by a kinase determine its function , 2020, Science.

[15]  Christopher J. Williams,et al.  Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix , 2019, Acta crystallographica. Section D, Structural biology.

[16]  D. Keedy Journey to the center of the protein: allostery from multitemperature multiconformer X-ray crystallography , 2019, Acta crystallographica. Section D, Structural biology.

[17]  John Beale,et al.  Resolving polymorphs and radiation-driven effects in microcrystals using fixed-target serial synchrotron crystallography , 2018, Acta crystallographica. Section D, Structural biology.

[18]  N. Vaidehi,et al.  Allosteric Activation of Striatal-Enriched Protein Tyrosine Phosphatase (STEP, PTPN5) by a Fragment-like Molecule. , 2018, Journal of medicinal chemistry.

[19]  C. Roumestand,et al.  Exploring Protein Conformational Landscapes Using High-Pressure NMR. , 2019, Methods in enzymology.

[20]  Frank von Delft,et al.  An expanded allosteric network in PTP1B by multitemperature crystallography, fragment screening, and covalent tethering , 2018, eLife.

[21]  Christopher J. Williams,et al.  MolProbity: More and better reference data for improved all‐atom structure validation , 2018, Protein science : a publication of the Protein Society.

[22]  A. Nairn,et al.  X-ray Characterization and Structure-Based Optimization of Striatal-Enriched Protein Tyrosine Phosphatase Inhibitors. , 2017, Journal of medicinal chemistry.

[23]  Steven M Lewis,et al.  Molprobity's ultimate rotamer‐library distributions for model validation , 2016, Proteins.

[24]  Ping Zhu,et al.  Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases , 2016, Nature.

[25]  Jesse B. Hopkins,et al.  Mapping the conformational landscape of a dynamic enzyme by multitemperature and XFEL crystallography , 2015, bioRxiv.

[26]  B. Shoichet,et al.  One Crystal, Two Temperatures: Cryocooling Penalties Alter Ligand Binding to Transient Protein Sites , 2015, Chembiochem : a European journal of chemical biology.

[27]  N. Watanabe,et al.  High-pressure protein crystallography of hen egg-white lysozyme , 2015, Acta crystallographica. Section D, Biological crystallography.

[28]  George I. Makhatadze,et al.  ProteinVolume: calculating molecular van der Waals and void volumes in proteins , 2015, BMC Bioinformatics.

[29]  A. Nairn,et al.  STEP61 is a substrate of the E3 ligase parkin and is upregulated in Parkinson’s disease , 2015, Proceedings of the National Academy of Sciences.

[30]  E. Girard,et al.  Functional Sub-states by High-pressure Macromolecular Crystallography. , 2015, Sub-cellular biochemistry.

[31]  H. Matsuki,et al.  High pressure bioscience : basic concepts, applications and frontiers , 2015 .

[32]  David A Sivak,et al.  Crystal cryocooling distorts conformational heterogeneity in a model Michaelis complex of DHFR. , 2014, Structure.

[33]  Fei Long,et al.  The PDB_REDO server for macromolecular structure model optimization , 2014, IUCrJ.

[34]  Brian K. Shoichet,et al.  The incorporation of protein flexibility and conformational energy penalties in docking screens to improve ligand discovery , 2014, Nature chemistry.

[35]  Alun W. Ashton,et al.  DIMPLE- a pipeline for the rapid generation of difference maps from protein crystals with putatively bound ligands , 2013 .

[36]  Nan Yan,et al.  Conformational Motions Regulate Phosphoryl Transfer in Related Protein Tyrosine Phosphatases , 2013, Science.

[37]  L. Tautz,et al.  Protein tyrosine phosphatases: structure, function, and implication in human disease. , 2013, Methods in molecular biology.

[38]  E. Girard,et al.  High-pressure macromolecular crystallography and NMR: status, achievements and prospects. , 2012, Current opinion in structural biology.

[39]  J. Naegele,et al.  Genetic manipulation of STEP reverses behavioral abnormalities in a fragile X syndrome mouse model , 2012, Genes, brain, and behavior.

[40]  P. Andrew Karplus,et al.  Linking Crystallographic Model and Data Quality , 2012, Science.

[41]  P. Zwart,et al.  Towards automated crystallographic structure refinement with phenix.refine , 2012, Acta crystallographica. Section D, Biological crystallography.

[42]  Nathaniel Echols,et al.  Accessing protein conformational ensembles using room-temperature X-ray crystallography , 2011, Proceedings of the National Academy of Sciences.

[43]  R. Page,et al.  Visualizing active-site dynamics in single crystals of HePTP: opening of the WPD loop involves coordinated movement of the E loop. , 2011, Journal of molecular biology.

[44]  D. Baker,et al.  Alternate states of proteins revealed by detailed energy landscape mapping. , 2011, Journal of molecular biology.

[45]  P. Lombroso,et al.  The role of STEP in Alzheimer's disease , 2010 .

[46]  H. Ng,et al.  Automated electron‐density sampling reveals widespread conformational polymorphism in proteins , 2010, Protein science : a publication of the Protein Society.

[47]  R. Fourme,et al.  Flexibility of the Cu,Zn superoxide dismutase structure investigated at 0.57 GPa. , 2010, Acta crystallographica. Section D, Biological crystallography.

[48]  K. Kurpiewska,et al.  High pressure macromolecular crystallography for structural biology: a review , 2010, Central European Journal of Biology.

[49]  D. Kern,et al.  Hidden alternate structures of proline isomerase essential for catalysis , 2010 .

[50]  Wen Hwa Lee,et al.  Large-Scale Structural Analysis of the Classical Human Protein Tyrosine Phosphatome , 2009, Cell.

[51]  Sol M Gruner,et al.  Alteration of citrine structure by hydrostatic pressure explains the accompanying spectral shift , 2008, Proceedings of the National Academy of Sciences.

[52]  D. Kern,et al.  Dynamic personalities of proteins , 2007, Nature.

[53]  Andy Hudmon,et al.  Structure, inhibitor, and regulatory mechanism of Lyp, a lymphoid-specific tyrosine phosphatase implicated in autoimmune diseases , 2007, Proceedings of the National Academy of Sciences.

[54]  Gerhard Hummer,et al.  Structural rigidity of a large cavity-containing protein revealed by high-pressure crystallography. , 2007, Journal of molecular biology.

[55]  Angus C. Nairn,et al.  Synaptic plasticity: one STEP at a time , 2006, Trends in Neurosciences.

[56]  S. Knapp,et al.  Crystal structures and inhibitor identification for PTPN5, PTPRR and PTPN7: a family of human MAPK-specific protein tyrosine phosphatases. , 2006, The Biochemical journal.

[57]  Gerhard Hummer,et al.  Cooperative water filling of a nonpolar protein cavity observed by high-pressure crystallography and simulation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Chae Un Kim,et al.  High-pressure cooling of protein crystals without cryoprotectants. , 2005, Acta crystallographica. Section D, Biological crystallography.

[59]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[60]  J. Kastrup,et al.  Water-molecule network and active-site flexibility of apo protein tyrosine phosphatase 1B. , 2004, Acta crystallographica. Section D, Biological crystallography.

[61]  Kazuyuki Akasaka,et al.  The solution structure of bovine pancreatic trypsin inhibitor at high pressure , 2003, Protein science : a publication of the Protein Society.

[62]  S. Gruner,et al.  Probing substates in sperm whale myoglobin using high-pressure crystallography. , 2002, Structure.

[63]  T. Prangé,et al.  High-pressure protein crystallography (HPPX): instrumentation, methodology and results on lysozyme crystals. , 2001, Journal of synchrotron radiation.

[64]  J. Richardson,et al.  The penultimate rotamer library , 2000, Proteins.

[65]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[66]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[67]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[68]  P. Wolynes,et al.  The energy landscapes and motions of proteins. , 1991, Science.

[69]  F M Richards,et al.  Crystal structure of hen egg-white lysozyme at a hydrostatic pressure of 1000 atmospheres. , 1987, Journal of molecular biology.