Decentralized computation for robust stability analysis of large state-space systems using Polya's theorem

In this paper, we propose a parallel algorithm to solve large robust stability problems. We apply Polya's theorem to a parameter-dependent version of the Lyapunov inequality to obtain a set of coupled linear matrix inequality conditions. We show that a common implementation of a primal-dual interior-point method for solving this LMI has a block diagonal structure which is preserved at each iteration. By exploiting this property, we create a highly scalable cluster-computing implementation of our algorithm for robust stability analysis of systems with large state-space. Numerical tests confirm the scalability of the algorithm.

[1]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[2]  Michael L. Overton,et al.  Primal-Dual Interior-Point Methods for Semidefinite Programming: Convergence Rates, Stability and Numerical Results , 1998, SIAM J. Optim..

[3]  Steve B. Furber The Future of Computer Technology and its Implications for the Computer Industry , 2008, Comput. J..

[4]  Masakazu Kojima,et al.  SDPARA: SemiDefinite Programming Algorithm paRAllel version , 2003, Parallel Comput..

[5]  Graziano Chesi,et al.  Robust stability of polytopic systems via polynomially parameter-dependent Lyapunov functions , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[6]  Victoria Powers,et al.  A quantitative Pólya's Theorem with zeros , 2009, J. Symb. Comput..

[7]  Didier Henrion,et al.  GloptiPoly: Global optimization over polynomials with Matlab and SeDuMi , 2003, TOMS.

[8]  Matthew M Peet,et al.  A parallel-computing solution for optimization of polynomials , 2010, Proceedings of the 2010 American Control Conference.

[9]  Ricardo C. L. F. Oliveira,et al.  Parameter-Dependent LMIs in Robust Analysis: Characterization of Homogeneous Polynomially Parameter-Dependent Solutions Via LMI Relaxations , 2007, IEEE Transactions on Automatic Control.

[10]  C. W. Scherer,et al.  Relaxations for Robust Linear Matrix Inequality Problems with Verifications for Exactness , 2005, SIAM J. Matrix Anal. Appl..

[11]  Xiong Zhang,et al.  Solving Large-Scale Sparse Semidefinite Programs for Combinatorial Optimization , 1999, SIAM J. Optim..

[12]  Pablo A. Parrilo,et al.  Introducing SOSTOOLS: a general purpose sum of squares programming solver , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[13]  Brian Borchers,et al.  Implementation of a primal–dual method for SDP on a shared memory parallel architecture , 2007, Comput. Optim. Appl..

[14]  Renato D. C. Monteiro,et al.  Primal-Dual Path-Following Algorithms for Semidefinite Programming , 1997, SIAM J. Optim..

[15]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[16]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[17]  E. Joffrin,et al.  A control-oriented model of the current profile in tokamak plasma , 2007 .

[18]  Robert J. Vanderbei,et al.  An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..

[19]  Pedro Luis Dias Peres,et al.  A less conservative LMI condition for the robust stability of discrete-time uncertain systems , 2001, Syst. Control. Lett..

[20]  S. J. Benson,et al.  DSDP3: dual scaling algorithm for general positive semidefinite programming. , 2001 .

[21]  G. Amdhal,et al.  Validity of the single processor approach to achieving large scale computing capabilities , 1967, AFIPS '67 (Spring).

[22]  M. Overton,et al.  Primal - dual interior - point methods for semidefinite programming : Stability, convergence, and nu , 1998 .

[23]  Carsten W. Scherer,et al.  Matrix Sum-of-Squares Relaxations for Robust Semi-Definite Programs , 2006, Math. Program..

[24]  P. Peres,et al.  Stability of polytopes of matrices via affine parameter-dependent lyapunov functions : Asymptotically exact LMI conditions , 2005 .