Tests of the Standard Model at the International Linear Collider

We present an overview of the capabilities that the International Linear Collider (ILC) offers for precision measurements that probe the Standard Model. First, we discuss the improvements that the ILC will make in precision electroweak observables, both from W boson production and radiative return to the Z at 250 GeV in the center of mass and from a dedicated GigaZ stage of running at the Z pole. We then present new results on precision measurements of fermion pair production, including the production of b and t quarks. We update the ILC projections for the determination of Higgs boson couplings through a Standard Model Effective Field Theory fit taking into account the new information on precision electroweak constraints. Finally, we review the capabilities of the ILC to measure the Higgs boson self-coupling.

[1]  M. Berggren,et al.  WIMP dark matter at the International Linear Collider , 2020, Physical Review D.

[2]  France,et al.  Higgs Boson studies at future particle colliders , 2019, Journal of High Energy Physics.

[3]  Kaoru Yokoya,et al.  Operation of ILC250 at the Z-pole , 2019, 1908.08212.

[4]  A. Paul,et al.  On the future of Higgs, electroweak and diboson measurements at lepton colliders , 2019, Journal of High Energy Physics.

[5]  H. Yamamoto,et al.  Complementarity between ILC250 and ILC-GigaZ , 2019, 1905.00220.

[6]  F. Simon Scanning Strategies at the Top Threshold at ILC , 2019, 1902.07246.

[7]  K. Kawagoe,et al.  Study of fermion pair events at the 250 GeV ILC. , 2019, 1902.05245.

[8]  Gerald Eigen,et al.  The International Linear Collider. A Global Project , 2019, 1901.09829.

[9]  F. Maltoni,et al.  A Monte Carlo global analysis of the Standard Model Effective Field Theory: the top quark sector , 2019, Journal of High Energy Physics.

[10]  A. Blondel,et al.  arXiv : Theory Requirements and Possibilities for the FCC-ee and other Future High Energy and Precision Frontier Lepton Colliders , 2019, 1901.02648.

[11]  G. Durieux,et al.  The top-quark window on compositeness at future lepton colliders , 2018, Journal of High Energy Physics.

[12]  I. Vila,et al.  Top-quark physics at the CLIC electron-positron linear collider , 2018, Journal of High Energy Physics.

[13]  Alexander Mitov,et al.  Prospects for the determination of the top-quark Yukawa coupling at future ${e}^{+}{e}^{-}$ colliders , 2018, Journal of Physics G: Nuclear and Particle Physics.

[14]  Nicola De Filippis,et al.  Higgs Physics at the HL-LHC and HE-LHC , 2019, 1902.00134.

[15]  A. Bodek,et al.  Beyond the Standard Model Physics at the HL-LHC and HE-LHC , 2018, 1812.07831.

[16]  M. Peskin,et al.  Fermion Pair Production in SO(5) x U(1) Gauge-Higgs Unification Models , 2018, 1811.07877.

[17]  J. Brau,et al.  The role of positron polarization for the inital $250$ GeV stage of the International Linear Collider , 2018, 1801.02840.

[18]  Keisuke Fujii,et al.  Model-Independent Determination of the Triple Higgs Coupling at e+e- Colliders , 2017, 1708.09079.

[19]  Robert Karl,et al.  Improved formalism for precision Higgs coupling fits , 2017, 1708.08912.

[20]  R. Simoniello,et al.  Jet reconstruction at high-energy electron–positron colliders , 2018, The European Physical Journal C.

[21]  F. Richard,et al.  Measurement of b quark EW couplings at ILC , 2017, 1709.04289.

[22]  Shuichiro Funatsu,et al.  Distinct signals of the gauge-Higgs unification in $e^+e^-$ collider experiments , 2017, 1705.05282.

[23]  Marco Farina,et al.  Energy helps accuracy: Electroweak precision tests at hadron colliders , 2016, 1609.08157.

[24]  F. Simon Impact of Theory Uncertainties on the Precision of the Top Quark Mass in a Threshold Scan at Future e+e- Colliders , 2016, 1611.03399.

[25]  M. Kurata,et al.  Top physics at high-energy lepton colliders , 2016, 1604.08122.

[26]  G. Wilson,et al.  Updated Study of a Precision Measurement of the W Mass from a Threshold Scan Using Polarized $\rm{e}^-$ and $\rm{e}^+$ at ILC , 2016, 1603.06016.

[27]  N. Walker ILC possibilities at Z and W , 2016 .

[28]  Erika Garutti,et al.  Measuring the Higgs Self-coupling at the International Linear Collider , 2016 .

[29]  B. Vormwald,et al.  A calibration system for Compton polarimetry at e+e− linear colliders , 2015, 1509.03178.

[30]  J. Brau,et al.  ILC Operating Scenarios , 2015, 1506.07830.

[31]  M. Beneke,et al.  Next-to-Next-to-Next-to-Leading Order QCD Prediction for the Top Antitop S-Wave Pair Production Cross Section Near Threshold in e(+)e(-) Annihilation. , 2015, Physical review letters.

[32]  James D. Wells,et al.  The Physics Case of the International Linear Collider , 2015, 1506.05992.

[33]  F. Richard,et al.  A precise characterisation of the top quark electro-weak vertices at the ILC , 2015, 1505.06020.

[34]  B. Vormwald,et al.  A quartz Cherenkov detector for Compton-polarimetry at future e+e− colliders , 2015, 1502.06955.

[35]  J. List,et al.  Spin transport and polarimetry in the beam delivery system of the international linear collider , 2014, 1405.2156.

[36]  F. Richard Present and future constraints on top EW couplings , 2014, 1403.2893.

[37]  S. Poss,et al.  Luminosity spectrum reconstruction at linear colliders , 2013, 1309.0372.

[38]  A. Anastassov,et al.  Higgs Working Group Report of the Snowmass 2013 Community Planning Study , 2013, 1310.8361.

[39]  A. Bodek,et al.  Working Group Report: Precision Study of Electroweak Interactions , 2013 .

[40]  P. Janot,et al.  Study of Electroweak Interactions at the Energy Frontier , 2013, 1310.6708.

[41]  C. Calancha,et al.  ILC Higgs White Paper , 2013, 1310.0763.

[42]  Marcel Stanitzki,et al.  The International Linear Collider Technical Design Report - Volume 4: Detectors , 2013 .

[43]  Shigeki Fukuda,et al.  The International Linear Collider Technical Design Report - Volume 3.II: Accelerator Baseline Design , 2013 .

[44]  Shigeki Fukuda,et al.  The International Linear Collider Technical Design Report - Volume 3.I: Accelerator \& in the Technical Design Phase , 2013 .

[45]  P. Bambade,et al.  Luminosity measurement at ILC , 2010, 1006.2539.

[46]  I. Marchesini Triple gauge couplings and polarization at the ILC and leakage in a highly granular calorimeter , 2011 .

[47]  K. Fujii,et al.  Study of Higgs Self-coupling at ILC , 2010, 1008.0921.

[48]  Y. Takubo Analysis of Higgs Self-coupling with ZHH at ILC , 2009, 0907.0524.

[49]  K. Mönig,et al.  Polarimeters and Energy Spectrometers for the ILC Beam Delivery System , 2009, 0904.0122.

[50]  A. Sapronov,et al.  Beam Parameter Determination using Beamstrahlung Photons and Incoherent Pairs , 2008 .

[51]  E. al.,et al.  Measurement of the branching ratios of the Z 0 into heavy quarks , 2005, hep-ex/0503005.

[52]  K. Abe Direct Measurement of Ab and Ac Using Vertex/Kaon Charge Tags at SLD , 2004 .

[53]  Riccardo Barbieri,et al.  Electroweak symmetry breaking after LEP1 and LEP2 , 2004, hep-ph/0405040.

[54]  M. Hauschild,et al.  Measurement of the production rate of charm quark pairs from gluons in hadronic Z , 1999 .

[55]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[56]  J. Rosner,et al.  An Analysis of Non-Oblique Corrections to the $Z b \bar b$ Vertex , 1994, hep-ph/9409211.

[57]  A. Blondel A scheme to measure the polarization asymmetry at the z pole in LEP , 1988 .