Inducing dynamically stable walking in an underactuated prototype planar biped

This paper presents the experimental implementation and validation of a framework for the systematic design, analysis, and performance enhancement of controllers that induce stable walking in N-link underactuated planar biped robots. Controllers designed via this framework act by enforcing virtual constraints - holonomic constraints imposed via feedback - on the robot's configuration. The stability properties of the resulting walking motions may be easily analyzed in terms of a two-dimensional sub-dynamic of the full walking model. The experimental validation is performed on RABBIT, a 5-link prototype constructed by the French project Commande de Robots a Pattes of the CNRS-GdR Automatique.

[1]  T. Takenaka,et al.  The development of Honda humanoid robot , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[2]  Christine Chevallereau,et al.  RABBIT: a testbed for advanced control theory , 2003 .

[3]  Akihito Sano,et al.  Realization of natural dynamic walking using the angular momentum information , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[4]  Jessy W. Grizzle,et al.  Experimental Validation of a Framework for the Design of Controllers that Induce Stable Walking in Planar Bipeds , 2004, Int. J. Robotics Res..

[5]  Arthur D. Kuo,et al.  Stabilization of Lateral Motion in Passive Dynamic Walking , 1999, Int. J. Robotics Res..

[6]  Daniel E. Koditschek,et al.  Hybrid zero dynamics of planar biped walkers , 2003, IEEE Trans. Autom. Control..

[7]  Bernard Espiau,et al.  Limit cycles and their stability in a passive bipedal gait , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[8]  Dan B. Marghitu,et al.  Rigid Body Collisions of Planar Kinematic Chains With Multiple Contact Points , 1994, Int. J. Robotics Res..

[9]  Carlos Canudas de Wit,et al.  Switching and PI control of walking motions of planar biped walkers , 2003, IEEE Trans. Autom. Control..

[10]  S. Kajita,et al.  Experimental study of biped dynamic walking , 1996 .

[11]  Jessy W. Grizzle,et al.  Interpolation and numerical differentiation for observer design , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[12]  A. Kuo,et al.  Active control of lateral balance in human walking. , 2000, Journal of biomechanics.

[13]  Chee-Meng Chew,et al.  Virtual Model Control: An Intuitive Approach for Bipedal Locomotion , 2001, Int. J. Robotics Res..

[14]  Franck Plestan,et al.  Asymptotically stable walking for biped robots: analysis via systems with impulse effects , 2001, IEEE Trans. Autom. Control..