On the Accuracy of Solving Confluent Prony Systems

In this paper we consider several nonlinear systems of algebraic equations which can be called “Prony-type.” These systems arise in various reconstruction problems in several branches of theoretical and applied mathematics, such as frequency estimation and nonlinear Fourier inversion. Consequently, the question of stability of solution with respect to errors in the right-hand side becomes critical for the success of any particular application. We investigate the question of “maximal possible accuracy” of solving Prony-type systems, putting stress on the “local” behavior which approximates situations with low absolute measurement error. The accuracy estimates are formulated in very simple geometric terms, shedding some light on the structure of the problem. Numerical tests suggest that “global” solution techniques such as Prony's algorithm and the ESPRIT method are suboptimal when compared to this theoretical “best local” behavior.

[1]  Garry Tamlyn,et al.  Music , 1993 .

[2]  Riccardo March,et al.  Application of the Padé Method to Solving the Noisy Trigonometric Moment Problem: Some Initial Results , 1998, SIAM J. Appl. Math..

[3]  Roland Badeau,et al.  Performance of ESPRIT for Estimating Mixtures of Complex Exponentials Modulated by Polynomials , 2007, IEEE Transactions on Signal Processing.

[4]  Emmanuel J. Candès,et al.  Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.

[5]  Thierry Blu,et al.  Extrapolation and Interpolation) , 2022 .

[6]  George Kvernadze Approximating the jump discontinuities of a function by its Fourier-Jacobi coefficients , 2004, Math. Comput..

[7]  Xiaomei Yang Rounding Errors in Algebraic Processes , 1964, Nature.

[8]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[9]  M. R. Osborne Some Special Nonlinear Least Squares Problems , 1975 .

[10]  Daniel Potts,et al.  Nonlinear Approximation by Sums of Exponentials and Translates , 2011, SIAM J. Sci. Comput..

[11]  Roland Badeau,et al.  CramÉr–Rao Bounds for Multiple Poles and Coefficients of Quasi-Polynomials in Colored Noise , 2008, IEEE Transactions on Signal Processing.

[12]  Tobin A. Driscoll,et al.  A Padé-based algorithm for overcoming the Gibbs phenomenon , 2004, Numerical Algorithms.

[13]  Bernhard Beckermann,et al.  The condition number of real Vandermonde, Krylov and positive definite Hankel matrices , 2000, Numerische Mathematik.

[14]  Daniel Potts,et al.  Parameter estimation for exponential sums by approximate Prony method , 2010, Signal Process..

[15]  P. Milanfar,et al.  Reconstructing planar domains from their moments , 2000 .

[16]  Walter Galitschi,et al.  On inverses of Vandermonde and confluent Vandermonde matrices , 1962 .

[17]  M. R. Osborne,et al.  On the consistency of Prony's method and related algorithms , 1992 .

[18]  Dmitry Batenkov,et al.  Moment inversion problem for piecewise D-finite functions , 2009, 0901.4665.

[19]  Thierry Blu,et al.  Sampling signals with finite rate of innovation , 2002, IEEE Trans. Signal Process..

[20]  Yosef Yomdin,et al.  Signal Acquisition from Measurements via Non-Linear Models , 2008 .

[21]  Ana C. Matos,et al.  Reduction of the Gibbs phenomenon for smooth functions with jumps by the ε-algorithm , 2008 .

[22]  Jon R Auton,et al.  Investigation of Procedures for Automatic Resonance Extraction from Noisy Transient Electromagnetics Data. Volume III. Translation of Prony's Original Paper and Bibliography of Prony's Method , 1981 .

[23]  Å. Björck,et al.  Algorithms for confluent Vandermonde systems , 1973 .

[24]  Nana S. Banerjee,et al.  Exponentially Accurate Approximations to Periodic Lipschitz Functions Based on Fourier Series Partial Sums , 1998, J. Sci. Comput..

[25]  Walter Gautschi,et al.  On inverses of Vandermonde and confluent Vandermonde matrices. II , 1963 .

[26]  Jon R Auton,et al.  Investigation of Procedures for Automatic Resonance Extraction from Noisy Transient Electromagnetics Data. Volume II. Appendices , 1981 .

[27]  Martin Vetterli,et al.  Sampling and reconstruction of signals with finite rate of innovation in the presence of noise , 2005, IEEE Transactions on Signal Processing.

[28]  Fermín S. Viloche Bazán,et al.  Conditioning of Rectangular Vandermonde Matrices with Nodes in the Unit Disk , 1999, SIAM J. Matrix Anal. Appl..

[29]  Frankie K. W. Chan,et al.  New insights on Pisarenko's method for sinusoidal frequency estimation , 2003, Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings..

[30]  Dmitry Batenkov,et al.  Reconstruction of Planar Domains from Partial Integral Measurements , 2012, 1205.5661.

[31]  Yonina C. Eldar,et al.  Performance bounds for the estimation of finite rate of innovation signals from noisy measurements , 2010, 2010 IEEE Sensor Array and Multichannel Signal Processing Workshop.

[32]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[33]  Thierry Blu,et al.  ON THE EXPONENTIAL REPRODUCING KERNELS FOR SAMPLING SIGNALS WITH FINITE RATE OF INNOVATION , 2010 .

[34]  Knut S. Eckhoff Accurate reconstructions of functions of finite regularity from truncated Fourier series expansions , 1995 .

[35]  Zhonggang Zeng Computing multiple roots of inexact polynomials , 2005, Math. Comput..

[36]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[37]  Ben Adcock,et al.  Convergence acceleration of modified Fourier series in one or more dimensions , 2010, Math. Comput..

[38]  V. I. Arnol'd Hyperbolic polynomials and Vandermonde mappings , 1986 .

[39]  L. S. Maergoîz,et al.  A multidimensional version of Prony's algorithm , 1994 .

[40]  Peyman Milanfar,et al.  A Stable Numerical Method for Inverting Shape from Moments , 1999, SIAM J. Sci. Comput..

[41]  Daniel Boley,et al.  Vandermonde Factorization of a Hankel Matrix ? , 2006 .

[42]  Hao Lu Fast Solution of Confluent Vandermonde Linear Systems , 1994 .

[43]  Kenneth Holmström,et al.  A review of the parameter estimation problem of fitting positive exponential sums to empirical data , 2002, Appl. Math. Comput..

[44]  Petre Stoica,et al.  MUSIC, maximum likelihood, and Cramer-Rao bound , 1989, IEEE Transactions on Acoustics, Speech, and Signal Processing.

[45]  Raj Mittra,et al.  Problems and Solutions Associated with Prony's Method for Processing Transient Data , 1978, IEEE Transactions on Electromagnetic Compatibility.

[46]  Dmitry Batenkov,et al.  Algebraic Fourier reconstruction of piecewise smooth functions , 2010, Math. Comput..

[47]  Bhaskar D. Mo Model Based Processing of Signals: A State Space Approach , 1992 .

[48]  Roland Badeau,et al.  High-resolution spectral analysis of mixtures of complex exponentials modulated by polynomials , 2006, IEEE Transactions on Signal Processing.

[49]  Charles Terence Clegg Wall,et al.  Singularities in algebraic data acquisition , 2010 .

[50]  AmakPoghosyan ASYMPTOTIC BEHAVIOR OF THE ECKHOFF METHOD FOR CONVERGENCE ACCELERATION OF TRIGONOMETRIC INTERPOLATION , 2010 .