THE DESIGN OF RECONFIGURABLE ASSEMBLY STATIONS FOR HIGH VARIETY AND MASS CUSTOMISATION MANUFACTURING

The economical production of mass customised and high variety goods is a challenge facing modern manufacturers. This challenge is being addressed, in part, by the on-going development of technologies that facilitate the manufacturing of these goods. Existing technologies require either excessive inbuilt flexibility or frequent changes to the machine set up to provide the manufacturing functions required for the customisation process. This paper presents design principles for automated assembly stations within the scope of mass customisation. Design principles are presented that minimise the hardware and operating complexities of assembly stations, allowing stations to be easily automated for concurrent mixed model assembly with a First In First Out (FIFO) scheduling policy. A reconfigurable assembly station is developed to demonstrate how the proposed design methods simplify the creation and operation of an assembly station for a product family of flashlights. OPSOMMING Die ekonomiese vervaardiging van grootskaalse aangepaste en hoe verskeidenheid goedere is ‘n uitdaging wat hedendaagse vervaardigers in die gesig staar. Die uitdaging word deels geadresseer deur die ontwikkel van tegnologiee wat die vervaardiging van hierdie goedere fasiliteer. Bestaande tegnologiee vereis egter uitgebreide ingeboude aanpasbaarheid of gereelde veranderinge aan die masjienopstelling, om die vervaardigingvermoe deur die aanpassings proses vereis, te verskaf. Hierdie artikel hou ontwerpbeginsels voor vir geoutomatiseerde monteerstasies binne die bestek van massa aanpasbaarheid. Die ontwerpbeginsels minimeer die hardeware- en bedryfkompleksiteit van monteerstasies. Hierdie benadering vergemaklik dit om stasies te outomatiseer vir gelyklopende gemengde model montering met ‘n Eerste-In-Eerste-Uit (FIFO) skeduleringsbeleid. ‘n Herkonfigureerbare monteerstasie is ontwikkel om te demonstreer hoe die voorgestelde ontwerpbeginsels die skep en bedryf van ‘n monteerstasie vir ‘n produk-familie van

[1]  Gary M. Bone,et al.  Vision-guided fixtureless assembly of automotive components , 2003 .

[2]  Ran Jin,et al.  Robust Fixture Layout Design for a Product Family Assembled in a Multistage Reconfigurable Line , 2009 .

[3]  Mitchell M. Tseng,et al.  Design for mass customization , 1996 .

[4]  Zhenyu Kong,et al.  Rapid Deployment of Reconfigurable Assembly Fixtures using Workspace Synthesis and Visibility Analysis , 2003 .

[5]  Jun Li,et al.  Rapid design and reconfiguration of Petri net models for reconfigurable manufacturing cells with improved net rewriting systems and activity diagrams , 2009, Comput. Ind. Eng..

[6]  Hui Wang,et al.  Multi-objective optimization of product variety and manufacturing complexity in mixed-model assembly systems , 2011 .

[7]  Tamio Arai,et al.  An easily reconfigurable robotic assembly system , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[8]  H. Harry Asada,et al.  Kinematic analysis of workpart fixturing for flexible assembly with automatically reconfigurable fixtures , 1985, IEEE J. Robotics Autom..

[9]  F. Musharavati RECONFIGURABLE MANUFACTURING SYSTEMS , 2010 .

[10]  John Paul Macduffie,et al.  Product variety and manufacturing performance: evidence from the international automotive assembly plant study , 1996 .

[11]  Brian Rodrigues,et al.  A Petri Net-based Approach to Reconfigurable Manufacturing Systems Modeling , 2009 .

[12]  Ran Jin,et al.  Robust Fixture Layout Design for a Product Family Assembled in a Multistage Reconfigurable Line , 2009 .

[13]  Hyoung-Ho Doh,et al.  Scheduling for a Reconfigurable Manufacturing System with Multiple Process Plans and Limited Pallets/Fixtures , 2012 .

[14]  Kazumasa Ohashi Dynamic process planning system for a machining center in an FMS environment , 1999 .

[15]  Manfredi Bruccoleri,et al.  Reconfigurable control of robotized manufacturing cells , 2007 .

[16]  Giovani J.C. da Silveira,et al.  Mass customization: Literature review and research directions , 2001 .

[17]  Yasumichi Aiyama,et al.  Holonic robot system: a flexible assembly system with high reconfigurability , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[18]  Rezia Molfino,et al.  Modular Assembly Systems: The SPI 3 Research Programme , 2002 .

[19]  Yoram Koren,et al.  Design of reconfigurable manufacturing systems , 2010 .

[20]  Yoram Koren,et al.  Product variety and manufacturing complexity in assembly systems and supply chains , 2008 .

[21]  George Chryssolouris,et al.  Assembly system design and operations for product variety , 2011 .

[22]  Dawn M. Tilbury,et al.  Modular finite state machines: Development and application to reconfigurable manufacturing cell controller generation , 2006 .

[23]  R. Ryan Vallance,et al.  Precisely positioning pallets in multi-station assembly systems , 2004 .

[24]  Lihui Wang,et al.  Current status of reconfigurable assembly systems , 2007, Int. J. Manuf. Res..

[25]  László Monostori,et al.  Matching Demand and System Structure in Reconfigurable Assembly Systems , 2012 .

[26]  Sotiris Makris,et al.  RFID driven robotic assembly for random mix manufacturing , 2012 .

[27]  Zhenyu Kong,et al.  Fixture workspace synthesis for reconfigurable assembly using procrustes-based pairwise configuration optimization , 2006 .

[28]  B. Benhabib,et al.  A reconfigurable modular fixturing system for thin-walled flexible objects , 1997 .

[29]  I-Ming Chen,et al.  Rapid response manufacturing through a rapidly recon"gurable robotic workcell , 2001 .

[30]  K. Feldmann,et al.  Highly flexible Assembly – Scope and Justification , 2001 .

[31]  Juhani Heilala,et al.  Modular reconfigurable flexible final assembly systems , 2001 .