Object detection by global contour shape

We present a method for object class detection in images based on global shape. A distance measure for elastic shape matching is derived, which is invariant to scale and rotation, and robust against non-parametric deformations. Starting from an over-segmentation of the image, the space of potential object boundaries is explored to find boundaries, which have high similarity with the shape template of the object class to be detected. An extensive experimental evaluation is presented. The approach achieves a remarkable detection rate of 83-91% at 0.2 false positives per image on three challenging data sets.

[1]  Alberto Del Bimbo,et al.  Visual Image Retrieval by Elastic Matching of User Sketches , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[3]  S. Chiba,et al.  Dynamic programming algorithm optimization for spoken word recognition , 1978 .

[4]  Alexei A. Efros,et al.  Using Multiple Segmentations to Discover Objects and their Extent in Image Collections , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[5]  Jitendra Malik,et al.  Motion segmentation and tracking using normalized cuts , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[6]  Takeo Kanade,et al.  Stereo by Intra- and Inter-Scanline Search Using Dynamic Programming , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[8]  Longin Jan Latecki,et al.  Shape Similarity Measure Based on Correspondence of Visual Parts , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[10]  Gian Antonio Mian,et al.  Trademark shapes description by string-matching techniques , 1994, Pattern Recognit..

[11]  Jitendra Malik,et al.  Learning to detect natural image boundaries using local brightness, color, and texture cues , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Daniel Snow,et al.  Efficient Deformable Template Detection and Localization without User Initialization , 2000, Comput. Vis. Image Underst..

[13]  Dariu Gavrila,et al.  Real-time object detection for "smart" vehicles , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[14]  Ronald Fagin,et al.  Relaxing the Triangle Inequality in Pattern Matching , 2004, International Journal of Computer Vision.

[15]  Bernt Schiele,et al.  Pedestrian detection in crowded scenes , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[16]  Luc Van Gool,et al.  Towards Multi-View Object Class Detection , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[17]  Jitendra Malik,et al.  Shape matching and object recognition using low distortion correspondences , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[18]  Frank Nielsen,et al.  Statistical region merging , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Shimon Ullman,et al.  Combining Top-Down and Bottom-Up Segmentation , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[20]  Shimon Ullman,et al.  Combining Class-Specific Fragments for Object Classification , 1999, BMVC.

[21]  Andrew Zisserman,et al.  A Boundary-Fragment-Model for Object Detection , 2006, ECCV.

[22]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[23]  Clark F. Olson,et al.  Automatic target recognition by matching oriented edge pixels , 1997, IEEE Trans. Image Process..

[24]  Daniel Cremers,et al.  Integral Invariants for Shape Matching , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Ronen Basri,et al.  Determining the similarity of deformable shapes , 1998, Vision Research.

[26]  Christos Faloutsos,et al.  QBIC project: querying images by content, using color, texture, and shape , 1993, Electronic Imaging.

[27]  C. Reeves Modern heuristic techniques for combinatorial problems , 1993 .

[28]  Andrew Blake,et al.  Contour-based learning for object detection , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[29]  Pietro Perona,et al.  A Probabilistic Approach to Object Recognition Using Local Photometry and Global Geometry , 1998, ECCV.

[30]  Pedro F. Felzenszwalb Representation and detection of deformable shapes , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[31]  Remco C. Veltkamp,et al.  Shape matching: similarity measures and algorithms , 2001, Proceedings International Conference on Shape Modeling and Applications.

[32]  Esther M. Arkin,et al.  An efficiently computable metric for comparing polygonal shapes , 1991, SODA '90.

[33]  K. Mardia Statistics of Directional Data , 1972 .

[34]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[35]  Michael H. F. Wilkinson,et al.  Shape representation and recognition through morphological curvature scale spaces , 2006, IEEE Transactions on Image Processing.

[36]  Margrit Betke,et al.  MosaicShape: stochastic region grouping with shape prior , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[37]  Luc Van Gool,et al.  Object Detection by Contour Segment Networks , 2006, ECCV.

[38]  D. Cremers,et al.  Diffusion-snakes: combining statistical shape knowledge and image information in a variational framework , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[39]  Robert C. Bolles,et al.  Parametric Correspondence and Chamfer Matching: Two New Techniques for Image Matching , 1977, IJCAI.

[40]  Alexei A. Efros,et al.  Geometric context from a single image , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[41]  Gunilla Borgefors,et al.  Hierarchical Chamfer Matching: A Parametric Edge Matching Algorithm , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[43]  Philip N. Klein,et al.  On Aligning Curves , 2003, IEEE Trans. Pattern Anal. Mach. Intell..