Preliminary lightning observations over Greece

[1] The first Precision Lightning Network, monitoring the Cloud-to-Ground (CG) lightning stroke activity over Greece and surrounding waters is operated and maintained by the Hellenic National Meteorological Service. This paper studies the regional (land/water interface), seasonal and diurnal variability of the CG strokes as a function of density, polarity and peak current. Additional investigation uniquely links the CG stroke current to sea surface salinity and cloud electrical capacitance. In brief, this study's major findings area as follows: (1) The seasonal maps of thunder days agree well with the regional climatic convective characteristics of the study area, (2) the CG diurnal variability is consistent with the global lightning activity observations over land and ocean, (3) the maxima of monthly averaged CG counts are located over land and water during typical summer and fall months respectively for both polarities, (4) CG peak currents show a distinct seasonality with larger currents during relatively colder months and smaller currents during summer months, and (5) strong linear trends between −CGs and sea surface salinity; (6) this trend is absent for +CGs data analysis of the employed database relate to the thunderstorm's RC constant and agrees with previous numerical modeling studies.

[1]  W. D. Rust,et al.  Precipitation charge and size measurements inside a New Mexico mountain thunderstorm , 1999 .

[2]  W. D. Rust,et al.  Positive cloud‐to‐ground lightning flashes in severe storms , 1981 .

[3]  Earle R. Williams,et al.  The Electrification of Thunderstorms , 1988 .

[4]  Richard E. Orville,et al.  Lightning Ground Flash Density and Thunderstorm Duration in the Continental United States: 1989–96 , 1999 .

[5]  Emmanouil N. Anagnostou,et al.  Error analysis for a long‐range lightning monitoring network of ground‐based receivers in Europe , 2003 .

[6]  H. Christian Global Frequency and Distribution of Lightning as Observed From Space , 2001 .

[7]  S. Cummer,et al.  Spectral dependence of terrestrial gamma‐ray flashes on source distance , 2009 .

[8]  R. Orville Peak-current variations of lightning return strokes as a function of latitude , 1990, Nature.

[9]  Paul Krehbiel,et al.  The electrical structure of the Hokuriku winter thunderstorms , 1982 .

[10]  J. L. Stocks,et al.  The Works of Aristotle Translated into English , 1922, The Classical Review.

[11]  Vladimir A. Rakov,et al.  Review and evaluation of lightning return stroke models including some aspects of their application , 1998 .

[12]  William J. Koshak,et al.  Geostationary Lightning Mapper for GOES-R and Beyond , 2008 .

[13]  H. Flocas,et al.  Hailstorms in Northern Greece: synoptic patterns and thermodynamic environment , 2003 .

[14]  V. Cooray,et al.  Propagation Effects Due to Finitely Conducting Ground on Lightning-Generated Magnetic Fields Evaluated Using Sommerfeld's Integrals , 2009, IEEE Transactions on Electromagnetic Compatibility.

[15]  Yukihiro Takahashi,et al.  Lightning flashes conducive to the production and escape of gamma radiation to space , 2006 .

[16]  M. Lethbridge Cosmic rays and thunderstorm frequency , 1981 .

[17]  B. Vonnegut,et al.  Electrical measurements over thunderstorms , 1989 .

[18]  Emmanouil N. Anagnostou,et al.  Assessment of the Use of Lightning Information in Satellite Infrared Rainfall Estimation , 2000 .

[19]  T. Soukissian,et al.  Advancement of Operational Oceanography in Greece: The Case of the Poseidon System , 2002 .

[20]  Walter A. Lyons,et al.  Large Peak Current Cloud-to-Ground Lightning Flashes during the Summer Months in the Contiguous United States , 1998 .

[21]  Emmanouil N. Anagnostou,et al.  High‐frequency estimation of rainfall from thunderstorms via satellite infrared and a long‐range lightning network in Europe , 2004 .

[22]  Edward J. Zipser,et al.  Relationships between Tropical Cyclone Intensity and Satellite-Based Indicators of Inner Core Convection: 85-GHz Ice-Scattering Signature and Lightning , 1999 .

[23]  H. L. Miller,et al.  Spectroscopic measurements of NO2 in a Colorado thunderstorm: Determination of the mean production by cloud-to-ground lightning flashes , 2004 .

[24]  V. Kourafalou,et al.  A nested circulation model for the North Aegean Sea , 2006 .

[25]  F. Robertson,et al.  Electrification in Hurricanes: Implications for Water Vapor in the Tropical Tropopause Layer , 2009 .

[26]  Earle R. Williams,et al.  Lightning and Forest Fires , 2001 .

[27]  Richard J. Blakeslee,et al.  The detection of lightning from geostationary orbit , 1989 .

[28]  Richard J. Blakeslee,et al.  Performance Assessment of the Optical Transient Detector and Lightning Imaging Sensor. Part I: Predicted Diurnal Variability , 2002 .

[29]  David P. Yorty,et al.  WHERE ARE THE MOST INTENSE THUNDERSTORMS ON EARTH , 2006 .

[30]  V. Kotroni,et al.  A comparison of lightning data provided by ZEUS and LINET networks over Western Europe , 2009 .

[31]  T. Chronis Investigating Possible Links between Incoming Cosmic Ray Fluxes and Lightning Activity , 2009 .

[32]  E. Williams Problems in lightning physics—the role of polarity asymmetry , 2006 .

[33]  R. Orville,et al.  Lighting Ground Flash Density in the Contiguous United States: 1992–95 , 1991 .

[34]  William R. Burrows,et al.  The North American Lightning Detection Network (NALDN)—First Results: 1998–2000 , 2002 .

[35]  G. Triantafyllou,et al.  Forecasting the Aegean Sea hydrodynamics within the POSEIDON-II operational system , 2010 .

[36]  E. Williams,et al.  The local diurnal variation of cloud electrification and the global diurnal variation of negative charge on the Earth , 1993 .

[37]  A. Jansà,et al.  Climatology of Mediterranean cyclones using the ERA‐40 dataset , 2011 .

[38]  B. Farrell,et al.  Mechanisms of Eastern Mediterranean Rainfall Variability , 2000 .

[39]  E. Anagnostou,et al.  African lightning: Indicator of Tropical Atlantic Cyclone formation , 2007 .

[40]  C. Price,et al.  Intense oceanic lightning , 2002 .

[41]  R. Thottappillil,et al.  Comparison of lightning return‐stroke models , 1993 .

[42]  Emmanouil N. Anagnostou,et al.  Evaluation of a long-range lightning detection network with receivers in Europe and Africa , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[43]  U. Inan,et al.  Subionospheric VLF signatures and their association with sprites observed during EuroSprite-2003 , 2005 .

[44]  Steven A. Rutledge,et al.  Cloud-to-Ground Lightning Activity in the Contiguous United States from 1995 to 1999 , 2001 .

[45]  A. Bartzokas,et al.  Extreme precipitation events in NW Greece , 2006 .

[46]  V. Kotroni,et al.  Lightning activity in the eastern Mediterranean region , 2005 .

[47]  Tsutomu Takahashi,et al.  Riming Electrification as a Charge Generation Mechanism in Thunderstorms , 1978 .

[48]  Richard J. Blakeslee,et al.  Performance Assessment of the Optical Transient Detector and Lightning Imaging Sensor. Part 2; Clustering Algorithm , 2007 .

[49]  Richard J. Blakeslee,et al.  Global lightning activity from the ENSO perspective , 2008 .

[50]  Vladimir A. Rakov,et al.  On the estimation of lightning peak currents from measured fields using lightning location systems , 2004 .

[51]  Objective Climatology of Cyclones in the Mediterranean Region , 1999 .

[52]  P. Nastos,et al.  Tornado activity in Greece within the 20th century , 2010 .

[53]  Richard J. Blakeslee,et al.  Lightning Imaging Sensor (LIS) for the Earth Observing System , 1992 .

[54]  Richard E. Orville,et al.  Cloud-to-ground lightning flash characteristics from June 1984 through May 1985 , 1987 .

[55]  Anthony C. L. Lee,et al.  An Operational System for the Remote Location of Lightning Flashes Using a VLF Arrival Time Difference Technique , 1986 .

[56]  Steven J. Goodman,et al.  North Alabama Lightning Mapping Array (LMA): VHF Source Retrieval Algorithm and Error Analyses , 2004 .

[57]  W. Koshak,et al.  The Optical Transient Detector (OTD): Instrument Characteristics and Cross-Sensor Validation , 2000 .

[58]  Kostas Lagouvardos,et al.  The effect of the island of Crete on the Etesian winds over the Aegean Sea , 2001 .

[59]  E. Williams,et al.  Lightning and climate: A review , 2005 .

[60]  W. J. Koshak,et al.  TOA Lightning Location Retrieval on Spherical and Oblate Spheroidal Earth Geometries , 2001 .

[61]  M. Rycroft,et al.  New model simulations of the global atmospheric electric circuit driven by thunderstorms and electrified shower clouds: The roles of lightning and sprites , 2007 .

[62]  E. Williams The positive charge reservoir for sprite-producing lightning , 1998 .

[63]  K. Gabriel,et al.  Temporal features in thunder days in the United States , 1989 .

[64]  Hongping Zhu,et al.  A source location algorithm of lightning detection networks in China , 2010 .

[65]  N. G. Prezerakos Synoptic flow patterns leading to the generation of north‐west African depressions , 2006 .

[66]  Robert H. Holzworth,et al.  WWLL global lightning detection system: Regional validation study in Brazil , 2004 .

[67]  Thomas H. Jordan,et al.  Measuring crustal deformation in the American West , 1988 .

[68]  G. Diendorfer,et al.  Thunderstorms, lightning and solar activity—Middle Europe , 2001 .

[69]  Emmanouil N. Anagnostou,et al.  Extending the Capabilities of High-Frequency Rainfall Estimation from Geostationary-Based Satellite Infrared via a Network of Long-Range Lightning Observations , 2003 .

[70]  O. Pinto,et al.  Monthly distribution of cloud‐to‐ground lightning flashes as observed by lightning location systems , 2006 .

[71]  Walter A. Petersen,et al.  Regional Variability in Tropical Convection: Observations from TRMM , 2001 .

[72]  P. Hobbs,et al.  Lightning over the Gulf Stream , 1990 .

[73]  Z. Levin,et al.  Lightning Activity over Land and Sea on the Eastern Coast of the Mediterranean , 2003 .

[74]  Kenneth L. Cummins,et al.  The U.S. National Lightning Detection NetworkTM and Applications of Cloud-to-Ground Lightning Data by Electric Power Utilities , 1998 .

[75]  E. Anagnostou,et al.  Evidence of Tropical Forcing of the 6.5-Day Wave from Lightning Observations over Africa , 2007 .

[76]  Heinz W. Kasemir,et al.  A Contribution to the Electrostatic Theory of a Lightning Discharge , 1960 .

[77]  Isabel F. Trigo,et al.  Climatology of Cyclogenesis Mechanisms in the Mediterranean , 2002 .

[78]  V. Kotroni,et al.  The sensitivity of numerical forecasts to convective parameterization during the warm period and the use of lightning data as an indicator for convective occurrence , 2009 .

[79]  E. Williams,et al.  The global electrical circuit: A review , 2009 .

[80]  E. Anagnostou,et al.  Evaluating the impact of lightning data assimilation on mesoscale model simulations of a flash flood inducing storm , 2009 .

[81]  C. R. Calidonna,et al.  The seasonal characteristics of the breeze circulation at a coastal Mediterranean site in South Italy , 2010 .

[82]  Theodore S. Karacostas,et al.  Cyclogenesis over the Aegean Sea: Identification and synoptic categories , 2007 .

[83]  Martin Uman,et al.  A Review of Natural Lightning: Experimental Data and Modeling , 1982, IEEE Transactions on Electromagnetic Compatibility.

[84]  J. Penner,et al.  NOx from lightning 2. Constraints from the global atmospheric electric circuit , 1997 .

[85]  William J. Koshak,et al.  Data Retrieval Algorithms for Validating the Optical Transient Detector and the Lightning Imaging Sensor , 2000 .

[86]  A. Bartzokas,et al.  A study on the intra‐annual variation and the spatial distribution of precipitation amount and duration over Greece on a 10 day basis , 2003 .

[87]  Richard E. Orville,et al.  Cloud-to-ground lightning in the United States: NLDN results in the first decade, 1989-98 , 2001 .

[88]  E. Williams,et al.  Total global lightning inferred from Schumann resonance measurements , 1998 .