Minimum distance estimators in extreme value distributions

We define minimum distance estimators for the parameters of the extreme value distribution Go based on the Cramer-von-Mises distance. These estimators are rather robust and consistent, but asymptotically less efficient than the maximum likelihood estimators which are not robust. A small simulation study for finite sample size show that under Go the finite efficiency of the minimum distance estimators is rather similar to the maximum likelihood ones.

[1]  Jürg Hüsler,et al.  On simple block estimators for the parameters of the extreme-value distribution , 1986 .

[2]  M. Silvapulle,et al.  Minimum mean squared estimation of location and scale parameters under misspecification of the model , 1981 .

[3]  M. R. Leadbetter,et al.  Extremes and Related Properties of Random Sequences and Processes: Springer Series in Statistics , 1983 .

[4]  Laurens de Haan,et al.  On regular variation and its application to the weak convergence of sample extremes , 1973 .

[5]  Albert H. Moore,et al.  Maximum-Likelihood Estimation, from Doubly Censored Samples, of the Parameters of the First Asymptotic Distribution of Extreme Values , 1968 .

[6]  Thomas P. Hettmansperger,et al.  Minimum distance estimators , 1994 .

[7]  J. D. T. Oliveira,et al.  The Asymptotic Theory of Extreme Order Statistics , 1979 .

[8]  N. Singpurwalla,et al.  Methods for Statistical Analysis of Reliability and Life Data. , 1975 .

[9]  Lee J. Bain,et al.  Some Complete and Censored Sampling Results for the Weibull or Extreme-Value Distribution , 1973 .

[10]  R. Serfling Approximation Theorems of Mathematical Statistics , 1980 .

[11]  Lee J. Bain,et al.  Simplified Statistical Procedures for the Weibull or Extreme-Value Distribution , 1977 .

[12]  Jerald F. Lawless,et al.  Statistical Models and Methods for Lifetime Data. , 1983 .

[13]  Joseph L. Gastwirth,et al.  Asymptotic Distribution of Linear Combinations of Functions of Order Statistics with Applications to Estimation , 1967 .

[14]  J. Hüsler,et al.  Simple Estimators for the Parameters of the Extreme-Value Distribution Based on Censored Data , 1983 .

[15]  Max Halperin,et al.  Maximum Likelihood Estimation in Truncated Samples , 1952 .

[16]  L. J. Bain Inferences Based on Censored Sampling From the Weibull or Extreme-Value Distribution , 1972 .