Asymmetric properties of the Chlamydomonas reinhardtii cytoskeleton direct rhodopsin photoreceptor localization

Daughter four-membered rootlet microtubules direct eyespot positioning and assembly.

[1]  D. L. Ringo FLAGELLAR MOTION AND FINE STRUCTURE OF THE FLAGELLAR APPARATUS IN CHLAMYDOMONAS , 1967, The Journal of cell biology.

[2]  K. Porter,et al.  FINE STRUCTURE OF CELL DIVISION IN CHLAMYDOMONAS REINHARDI , 1968, The Journal of cell biology.

[3]  H. Gruber,et al.  Variation in eyespot ultrastructure in Chlamydomonas reinhardi (ac-31). , 1974, Journal of Cell Science.

[4]  U. Goodenough,et al.  BALD-2: a mutation affecting the formation of doublet and triplet sets of microtubules in Chlamydomonas reinhardtii , 1975, The Journal of cell biology.

[5]  O. Moestrup On the phylogenetic validity of the flagellar apparatus in green algae and other chlorophyll A and B containing plants. , 1978, Bio Systems.

[6]  M. Melkonian,et al.  Eyespot membranes of Chlamydomonas reinhardii: a freeze-fracture study. , 1980, Journal of ultrastructure research.

[7]  K. Foster,et al.  Light Antennas in phototactic algae. , 1980, Microbiological reviews.

[8]  P. Frederikse,et al.  Chemotactic responses of Chlamydomonas reinhardtii , 1981, Molecular and cellular biology.

[9]  S. Dutcher,et al.  Uniflagellar mutants of chlamydomonas: Evidence for the role of basal bodies in transmission of positional information , 1982, Cell.

[10]  G. Witman,et al.  Submicromolar levels of calcium control the balance of beating between the two flagella in demembranated models of Chlamydomonas , 1984, The Journal of cell biology.

[11]  J. Jarvik,et al.  A nucleus-basal body connector in Chlamydomonas reinhardtii that may function in basal body localization or segregation , 1985, The Journal of cell biology.

[12]  G. Piperno,et al.  Monoclonal antibodies specific for an acetylated form of alpha-tubulin recognize the antigen in cilia and flagella from a variety of organisms , 1985, The Journal of cell biology.

[13]  G. Piperno,et al.  Cytoplasmic microtubules containing acetylated alpha-tubulin in Chlamydomonas reinhardtii: spatial arrangement and properties , 1986, The Journal of cell biology.

[14]  R. Kamiya,et al.  Intrinsic difference in beat frequency between the two flagella of Chlamydomonas reinhardtii. , 1987, Experimental cell research.

[15]  S. Dutcher,et al.  Cellular asymmetry in Chlamydomonas reinhardtii. , 1989, Journal of cell science.

[16]  J. Jarvik,et al.  Nucleus-basal body connector in Chlamydomonas: evidence for a role in basal body segregation and against essential roles in mitosis or in determining cell polarity. , 1989, Cell motility and the cytoskeleton.

[17]  U. Rüffer,et al.  Flagellar photoresponses of Chlamydomonas cells held on micropipettes: II. Change in flagellar beat pattern , 1990 .

[18]  U. Rüffer,et al.  Flagellar photoresponses ofChlamydomonascells held on micropipettes: II. Change in flagellar beat pattern: Flagellar Beat Pattern Change inchlamydomonas , 1991 .

[19]  M. Melkonian,et al.  Striated microtubule-associated fibers: identification of assemblin, a novel 34-kD protein that forms paracrystals of 2-nm filaments in vitro , 1991, The Journal of cell biology.

[20]  B. Taillon,et al.  Mutational analysis of centrin: an EF-hand protein associated with three distinct contractile fibers in the basal body apparatus of Chlamydomonas , 1992, The Journal of cell biology.

[21]  G. Witman Chlamydomonas phototaxis. , 1993, Trends in cell biology.

[22]  MOIRA A. Lawson,et al.  Characterization of the Eyespot Regions of “Blind”Chlamydomonas Mutants after Restoration of Photophobic Responses , 1994, The Journal of eukaryotic microbiology.

[23]  John L. Hall,et al.  The Chlamydomonas FLA10 gene encodes a novel kinesin-homologous protein , 1994, The Journal of cell biology.

[24]  U. Rüffer,et al.  Flagellar Photoresponses of Chlamydomonas Cells Held on Micropipettes: III. Shock Response , 1995 .

[25]  S. Dutcher,et al.  Loss of spatial control of the mitotic spindle apparatus in a Chlamydomonas reinhardtii mutant strain lacking basal bodies. , 1995, Genetics.

[26]  John L. Hall,et al.  The kinesin-homologous protein encoded by the Chlamydomonas FLA10 gene is associated with basal bodies and centrioles. , 1996, Journal of Cell Science.

[27]  C. Silflow,et al.  SF-assemblin in Chlamydomonas: sequence conservation and localization during the cell cycle. , 1997, Cell motility and the cytoskeleton.

[28]  R. Kamiya,et al.  Beat frequency difference between the two flagella of Chlamydomonas depends on the attachment site of outer dynein arms on the outer-doublet microtubules. , 1997, Cell motility and the cytoskeleton.

[29]  G. Piperno,et al.  Distinct Mutants of Retrograde Intraflagellar Transport (IFT) Share Similar Morphological and Molecular Defects , 1998, The Journal of cell biology.

[30]  S. Dutcher,et al.  Pharmacological and genetic evidence for a role of rootlet and phycoplast microtubules in the positioning and assembly of cleavage furrows in Chlamydomonas reinhardtii. , 1998, Cell motility and the cytoskeleton.

[31]  Flagellar coordination in Chlamydomonas cells held on micropipettes. , 1998, Cell motility and the cytoskeleton.

[32]  S. Dutcher,et al.  The UNI3 gene is required for assembly of basal bodies of Chlamydomonas and encodes delta-tubulin, a new member of the tubulin superfamily. , 1998, Molecular biology of the cell.

[33]  C. Dieckmann,et al.  Eyespot-assembly mutants in Chlamydomonas reinhardtii. , 1999, Genetics.

[34]  G. Pazour,et al.  The DHC1b (DHC2) Isoform of Cytoplasmic Dynein Is Required for Flagellar Assembly , 1999, The Journal of cell biology.

[35]  M. Porter,et al.  Cytoplasmic dynein heavy chain 1b is required for flagellar assembly in Chlamydomonas. , 1999, Molecular biology of the cell.

[36]  M. Bornens,et al.  The Respective Contributions of the Mother and Daughter Centrioles to Centrosome Activity and Behavior in Vertebrate Cells , 2000, The Journal of cell biology.

[37]  P. Lefebvre,et al.  The bld1 mutation identifies the Chlamydomonas osm-6 homolog as a gene required for flagellar assembly , 2001, Current Biology.

[38]  C. Dieckmann,et al.  Characterization of the EYE2 gene required for eyespot assembly in Chlamydomonas reinhardtii. , 2001, Genetics.

[39]  Massimo Sassaroli,et al.  Protein Particles in Chlamydomonas Flagella Undergo a Transport Cycle Consisting of Four Phases , 2001, The Journal of cell biology.

[40]  J. Rosenbaum,et al.  Localization of intraflagellar transport protein IFT52 identifies basal body transitional fibers as the docking site for IFT particles , 2001, Current Biology.

[41]  E. H. Harris,et al.  CHLAMYDOMONAS AS A MODEL ORGANISM. , 2003, Annual review of plant physiology and plant molecular biology.

[42]  S. Dutcher,et al.  Epsilon-tubulin is an essential component of the centriole. , 2002, Molecular biology of the cell.

[43]  E. Bamberg,et al.  Channelrhodopsin-1: A Light-Gated Proton Channel in Green Algae , 2002, Science.

[44]  C. Dieckmann,et al.  Eyespot placement and assembly in the green alga Chlamydomonas. , 2003, BioEssays : news and reviews in molecular, cellular and developmental biology.

[45]  K. Lechtreck,et al.  Centrin deficiency in Chlamydomonas causes defects in basal body replication, segregation and maturation , 2003, Journal of Cell Science.

[46]  R. Kamiya,et al.  Gravitaxis in Chlamydomonas reinhardtii studied with novel mutants. , 2003, Plant & cell physiology.

[47]  H. Fukuzawa,et al.  Archaeal-type rhodopsins in Chlamydomonas: model structure and intracellular localization. , 2003, Biochemical and biophysical research communications.

[48]  S. Dutcher Elucidation of Basal Body and Centriole Functions in Chlamydomonas reinhardtii , 2003, Traffic.

[49]  Kwang-Hwan Jung,et al.  Chlamydomonas sensory rhodopsins A and B: cellular content and role in photophobic responses. , 2004, Biophysical journal.

[50]  M. Melkonian,et al.  The ultrastructure of the Chlamydomonas reinhardtii basal apparatus: identification of an early marker of radial asymmetry inherent in the basal body , 2004, Journal of Cell Science.

[51]  Peter Hegemann,et al.  "Vision" in single-celled algae. , 2004, News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society.

[52]  S. Dutcher,et al.  Mutant kinesin-2 motor subunits increase chromosome loss. , 2005, Molecular biology of the cell.

[53]  E. Ermilova,et al.  Chemotaxis towards sugars inChlamydomonas reinhardtii , 1993, Current Microbiology.

[54]  M. Melkonian,et al.  Centrin Scaffold in Chlamydomonas reinhardtii Revealed by Immunoelectron Microscopy , 2005, Eukaryotic Cell.

[55]  M. Porter,et al.  The FLA3 KAP subunit is required for localization of kinesin-2 to the site of flagellar assembly and processive anterograde intraflagellar transport. , 2005, Molecular biology of the cell.

[56]  Dale N. Richardson,et al.  Comprehensive comparative analysis of kinesins in photosynthetic eukaryotes , 2006, BMC Genomics.

[57]  A. M. Roberts Mechanisms of Gravitaxis in Chlamydomonas , 2006, The Biological Bulletin.

[58]  W. Marshall,et al.  The Mother Centriole Plays an Instructive Role in Defining Cell Geometry , 2007, PLoS biology.

[59]  Sara L. Zimmer,et al.  The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions , 2007, Science.

[60]  Hongmin Qin,et al.  Intraflagellar Transport Protein 27 Is a Small G Protein Involved in Cell-Cycle Control , 2007, Current Biology.

[61]  Oliver P. Ernst,et al.  Channelrhodopsin-1 Initiates Phototaxis and Photophobic Responses in Chlamydomonas by Immediate Light-Induced Depolarization[W] , 2008, The Plant Cell Online.

[62]  P. Lefebvre,et al.  The Uni2 phosphoprotein is a cell cycle regulated component of the basal body maturation pathway in Chlamydomonas reinhardtii. , 2008, Molecular biology of the cell.

[63]  W. Wadsworth,et al.  Axon guidance: asymmetric signaling orients polarized outgrowth. , 2008, Trends in cell biology.

[64]  G. Kreimer,et al.  The green algal eyespot apparatus: a primordial visual system and more? , 2009, Current Genetics.

[65]  C. Dieckmann,et al.  C2 Domain Protein MIN1 Promotes Eyespot Organization in Chlamydomonas reinhardtii , 2008, Eukaryotic Cell.

[66]  Dawen Cai,et al.  Tubulin modifications and their cellular functions. , 2008, Current opinion in cell biology.

[67]  P. Gönczy Mechanisms of asymmetric cell division: flies and worms pave the way , 2008, Nature Reviews Molecular Cell Biology.

[68]  G. Gundersen,et al.  Beyond polymer polarity: how the cytoskeleton builds a polarized cell , 2008, Nature Reviews Molecular Cell Biology.

[69]  C. Anderson,et al.  Centriole Age Underlies Asynchronous Primary Cilium Growth in Mammalian Cells , 2009, Current Biology.

[70]  E. H. Harris The Chlamydomonas sourcebook , 2009 .

[71]  Y. Yamashita The centrosome and asymmetric cell division , 2009, Prion.

[72]  D. Bergmann,et al.  Asymmetric cell divisions: a view from plant development. , 2009, Developmental cell.

[73]  C. Silflow,et al.  The UNI1 and UNI2 genes function in the transition of triplet to doublet microtubules between the centriole and cilium in Chlamydomonas. , 2009, Molecular biology of the cell.

[74]  S. Shi,et al.  Asymmetric centrosome inheritance maintains neural progenitors in neocortex , 2009, Nature.

[75]  S. Dutcher,et al.  Genetic and phenotypic analysis of flagellar assembly mutants in Chlamydomonas reinhardtii. , 2009, Methods in cell biology.

[76]  Yishi Jin,et al.  Roles of endosomal trafficking in neurite outgrowth and guidance. , 2009, Trends in cell biology.

[77]  I. Arnal,et al.  Structural basis of EB1 effects on microtubule dynamics. , 2009, Biochemical Society transactions.

[78]  W. Marshall,et al.  ASQ2 Encodes a TBCC-like Protein Required for Mother-Daughter Centriole Linkage and Mitotic Spindle Orientation , 2009, Current Biology.

[79]  M. Riparbelli,et al.  Centriole symmetry: a big tale from small organisms. , 2009, Cell motility and the cytoskeleton.

[80]  I. Kaverina,et al.  Microtubule network asymmetry in motile cells: Role of Golgi-derived array , 2009, Cell cycle.

[81]  J. Ahringer,et al.  Cell Polarity in Eggs and Epithelia: Parallels and Diversity , 2010, Cell.

[82]  H. Sawa Specification of neurons through asymmetric cell divisions , 2010, Current Opinion in Neurobiology.

[83]  A. Sobel,et al.  The microtubule network and neuronal morphogenesis: Dynamic and coordinated orchestration through multiple players , 2010, Molecular and Cellular Neuroscience.

[84]  J. Rosenbaum,et al.  Intraflagellar transport: it's not just for cilia anymore. , 2010, Current opinion in cell biology.

[85]  D. Kropf,et al.  Asymmetric microtubule arrays organize the endoplasmic reticulum during polarity establishment in the brown alga Silvetia compressa , 2010, Cytoskeleton.

[86]  C. Dieckmann,et al.  Thioredoxin-family protein EYE2 and Ser/Thr kinase EYE3 play interdependent roles in eyespot assembly , 2011, Molecular biology of the cell.