Influence of the chirality of short peptide supramolecular hydrogels in protein crystallogenesis.

For the first time the influence of the chirality of the gel fibers in protein crystallogenesis has been studied. Enantiomeric hydrogels 1 and 2 were tested with model proteins lysozyme and glucose isomerase and a formamidase extracted from B. cereus. Crystallization behaviour and crystal quality of these proteins in both hydrogels are presented and compared.

[1]  X. Qu,et al.  Opposing enantiomers of tartaric acid anchored on a surface generate different insulin assemblies and hence contrasting cellular responses , 2014 .

[2]  Bing Xu,et al.  d-Amino Acids Modulate the Cellular Response of Enzymatic-Instructed Supramolecular Nanofibers of Small Peptides , 2014, Biomacromolecules.

[3]  Ziyu Lv,et al.  Chiral effect at protein/graphene interface: a bioinspired perspective to understand amyloid formation. , 2014, Journal of the American Chemical Society.

[4]  Kathrin Benson,et al.  Cell adhesion behavior in 3D hydrogel scaffolds functionalized with D- or L-aminoacids. , 2014, Macromolecular bioscience.

[5]  J. A. Gavira,et al.  Use of Cross-Linked Poly(ethylene glycol)-Based Hydrogels for Protein Crystallization , 2014, Crystal growth & design.

[6]  C. Easton,et al.  Chirality effects at each amino acid position on tripeptide self-assembly into hydrogel biomaterials. , 2014, Nanoscale.

[7]  Ziyu Lv,et al.  Solvent-driven chiral-interaction reversion for organogel formation. , 2014, Angewandte Chemie.

[8]  A. Lenhoff,et al.  Polymorphic Protein Crystal Growth: Influence of Hydration and Ions in Glucose Isomerase. , 2014, Crystal growth & design.

[9]  R. Ulijn,et al.  Cooperative Self-Assembly of Peptide Gelators and Proteins , 2013, Biomacromolecules.

[10]  Marcus S Niepel,et al.  Enantiopure Chiral Poly(glycerol methacrylate) Self‐Assembled Monolayers Knock Down Protein Adsorption and Cell Adhesion , 2013, Advanced healthcare materials.

[11]  J. A. Gavira,et al.  Growth of Ultrastable Protein–Silica Composite Crystals , 2013 .

[12]  Bing Xu,et al.  Interactions between cellular proteins and morphologically different nanoscale aggregates of small molecules. , 2013, RSC advances.

[13]  T. Lithgow,et al.  Self-assembly of ciprofloxacin and a tripeptide into an antimicrobial nanostructured hydrogel. , 2013, Biomaterials.

[14]  C. Easton,et al.  Tripeptide Self-Assembled Hydrogels: Soft Nanomaterials for Biological Applications , 2013 .

[15]  Bing Xu,et al.  D-amino acids boost the selectivity and confer supramolecular hydrogels of a nonsteroidal anti-inflammatory drug (NSAID). , 2013, Journal of the American Chemical Society.

[16]  D. Winkler,et al.  Unzipping the role of chirality in nanoscale self-assembly of tripeptide hydrogels. , 2012, Nanoscale.

[17]  Bing Xu,et al.  Using supramolecular hydrogels to discover the interactions between proteins and molecular nanofibers of small molecules. , 2012, Chemical communications.

[18]  Kathrin Benson,et al.  Cell adhesion behavior on enantiomerically functionalized zeolite L monolayers. , 2012, Angewandte Chemie.

[19]  Tsuyoshi Inoue,et al.  Growth of protein crystals in hydrogels prevents osmotic shock. , 2012, Journal of the American Chemical Society.

[20]  Taolei Sun,et al.  Chiral biointerface materials. , 2012, Chemical Society reviews.

[21]  C. Easton,et al.  Tripeptide self-assembled hydrogels: unexpected twists of chirality. , 2012, Chemical communications.

[22]  T. A. Hatton,et al.  Gel-induced selective crystallization of polymorphs. , 2012, Journal of the American Chemical Society.

[23]  Pankaj Kumar,et al.  Sonication-induced instant amyloid-like fibril formation and organogelation by a tripeptide , 2011 .

[24]  J. Steed,et al.  Anion-switchable supramolecular gels for controlling pharmaceutical crystal growth , 2010, Nature Chemistry.

[25]  Junbai Li,et al.  Self-assembly and application of diphenylalanine-based nanostructures. , 2010, Chemical Society reviews.

[26]  B. Lorber,et al.  Crystal growth of proteins, nucleic acids, and viruses in gels. , 2009, Progress in biophysics and molecular biology.

[27]  D. Seliktar,et al.  Self-assembled Fmoc-peptides as a platform for the formation of nanostructures and hydrogels. , 2009, Biomacromolecules.

[28]  Bing Xu,et al.  Molecular hydrogels of therapeutic agents. , 2009, Chemical Society reviews.

[29]  G. Nicolis,et al.  Toward a Definition of X-ray Crystal Quality† , 2008 .

[30]  B. Escuder,et al.  Insight on the NMR study of supramolecular gels and its application to monitor molecular recognition on self-assembled fibers. , 2006, The Journal of organic chemistry.

[31]  Rositza I. Petrova,et al.  Selective growth and distribution of crystalline enantiomers in hydrogels. , 2004, Journal of the American Chemical Society.

[32]  M. Camara,et al.  Lanthanide-Based Molecular Materials: Gel Medium Induced Polymorphism , 2003 .

[33]  Z. Dauter,et al.  SAD manganese in two crystal forms of glucose isomerase. , 2003, Acta crystallographica. Section D, Biological crystallography.

[34]  J. A. Gavira,et al.  Agarose as crystallisation media for proteins II: trapping of gel fibres into the crystals. , 2002, Acta crystallographica. Section D, Biological crystallography.

[35]  Jérôme Basquin,et al.  Crystallization of biological macromolecules using agarose gel. , 2002, Acta crystallographica. Section D, Biological crystallography.

[36]  K. Caran,et al.  Anatomy of a Gel. Amino Acid Derivatives That Rigidify Water at Submillimolar Concentrations , 2000 .

[37]  D. Whitten,et al.  1H NMR Investigation of the Composition, Structure, and Dynamics of Cholesterol−Stilbene Tethered Dyad Organogels , 2000 .

[38]  J. A. Gavira,et al.  Reinforced protein crystals , 1998 .

[39]  F. Boué,et al.  Gel growth of lysozyme crystals studied by small angle neutron scattering: case of silica gel, a nucleation inhibitor , 1998 .

[40]  F. Boué,et al.  Gel growth of lysozyme crystals studied by small angle neutron scattering: case of agarose gel, a nucleation promotor , 1998 .

[41]  I. Hamachi,et al.  Semi-wet peptide/protein array using supramolecular hydrogel , 2004, Nature materials.

[42]  Dana Sherman,et al.  Doctor of philosophy , 2018, Canadian Medical Association Journal.