Improving GPR Image Resolution in Lossy Ground Using Dispersive Migration

As a compact wave packet travels through a dispersive medium, it becomes dilated and distorted. As a result, ground-penetrating radar (GPR) surveys over conductive and/or lossy soils often result in poor image resolution. A dispersive migration method is presented that combines an inverse dispersion filter with frequency-domain migration. The method requires a fully characterized GPR system including the antenna response, which is a function of the local soil properties for ground-coupled antennas. The GPR system response spectrum is used to stabilize the inverse dispersion filter. Dispersive migration restores attenuated spectral components when the signal-to-noise ratio is adequate. Applying the algorithm to simulated data shows that the improved spatial resolution is significant when data are acquired with a GPR system having 120 dB or more of dynamic range, and when the medium has a loss tangent of 0.3 or more. Results also show that dispersive migration provides no significant advantage over conventional migration when the loss tangent is less than 0.3, or when using a GPR system with a small dynamic range.

[1]  Yanghua Wang,et al.  A stable and efficient approach of inverse Q filtering , 2002 .

[2]  E. I. Parkhomenko Electrical properties of rocks , 1967 .

[3]  M.H. Powers,et al.  Migration of dispersive GPR data , 2004, Proceedings of the Tenth International Conference on Grounds Penetrating Radar, 2004. GPR 2004..

[4]  Abidin Kaya,et al.  Identification of Contaminated Soils by Dielectric Constant and Electrical Conductivity , 1997 .

[5]  Changjun Wang,et al.  Dielectric-Relaxation Spectroscopy of Kaolinite, Montmorillonite, Allophane, and Imogolite under Moist Conditions , 2000 .

[6]  N. Hargreaves,et al.  Inverse Q filtering by Fourier transform , 1991 .

[7]  James Irving,et al.  Removal of Wavelet Dispersion from Ground-Penetrating Radar Data , 2003 .

[8]  R. Stolt MIGRATION BY FOURIER TRANSFORM , 1978 .

[9]  George A. McMechan,et al.  Synthesis of amplitude-versus-offset variations in ground-penetrating radar data , 2000 .

[10]  M. A. Frenkel,et al.  The solution of the inverse problems on the basis of the analitical continuation of the transient electromagnetic field in the reverse time. , 1983 .

[11]  Öz Yilmaz,et al.  Seismic data processing , 1987 .

[12]  Gary R. Olhoeft,et al.  Electrical properties from 10−3 to 10+9 HZ−−Physics and chemistry , 2008 .

[13]  Gary R. Olhoeft,et al.  Automatic processing and modeling of GPR data for pavement thickness and properties , 2000, International Conference on Ground Penetrating Radar.

[14]  D. Robinson Measurement of the Solid Dielectric Permittivity of Clay Minerals and Granular Samples Using a Time Domain Reflectometry Immersion Method , 2004 .

[15]  Mats Nygren,et al.  Electrical and magnetic properties of V1−xWxO2, 0 ≤ x ≤ 0.060 , 1972 .

[16]  Yanghua Wang,et al.  Quantifying the effectiveness of stabilized inverse Q filtering , 2003 .

[17]  David M. Kerns Plane-Wave Scattering-Matrix Theory of Antennas and Antenna-Antenna Interactions , 1978 .

[18]  Marnik Vanclooster,et al.  Estimating soil electric properties from monostatic ground‐penetrating radar signal inversion in the frequency domain , 2004 .

[19]  Gary R. Olhoeft,et al.  Petrophysical causes of electromagnetic dispersion , 1994 .

[20]  Rune Mittet,et al.  A two-step approach to depth migration of low frequency electromagnetic data. , 2005 .

[21]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[22]  Steven A. Arcone,et al.  Propagation of a ground-penetrating radar (GPR) pulse in a thin-surface waveguide , 2003 .

[23]  G. Olhoeft,et al.  Ground penetrating radar antenna system analysis for prediction of earth material properties , 2005, 2005 IEEE Antennas and Propagation Society International Symposium.

[24]  Michael S. Zhdanov,et al.  Underground imaging by frequency-domain electromagnetic migration , 1996 .

[25]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[26]  Gary F. Margrave Theory of Nonstationary Linear Filtering In the Fourier Domain , 1997 .

[27]  Richard K. Moore,et al.  Microwave Remote Sensing , 1999 .

[28]  C. Balanis Advanced Engineering Electromagnetics , 1989 .

[29]  C. Balanis Antenna theory , 1982 .

[30]  Ari Sihvola,et al.  Electromagnetic mixing formulas and applications , 1999 .

[31]  M. J. Tompkins,et al.  Marine controlled-source electromagnetic imaging for hydrocarbon exploration: interpreting subsurface electrical properties , 2004 .

[32]  Michael S. Zhdanov,et al.  Time-domain electromagnetic migration in the solution of inverse problems , 1997 .

[33]  Jenö Gazdag,et al.  Wave equation migration with the phase-shift method , 1978 .

[34]  S. Bickel,et al.  Plane-wave Q deconvolution , 1985 .

[35]  G. W. Hohmann,et al.  4. Electromagnetic Theory for Geophysical Applications , 1987 .

[36]  Jerzy Wtorek EUDEM 2 Technology Survey Electrical and Magnetic Properties of Soil , 2004 .

[37]  Gary R. Olhoeft,et al.  A Ground Penetrating Radar System for High Loss Environments , 2005 .

[38]  J. Wang,et al.  Subsurface imaging using magnetotelluric data , 1988 .

[39]  Gary R. Olhoeft,et al.  Tables of Room Temperature Electrical Properties for Selected Rocks and Minerals with Dielectric Permittivity Statistics , 1979 .