Topological spaces of persistence modules and their properties

Persistence modules are a central algebraic object arising in topological data analysis. The notion of interleaving provides a natural way to measure distances between persistence modules. We consider various classes of persistence modules, including many of those that have been previously studied, and describe the relationships between them. In the cases where these classes are sets, interleaving distance induces a topology. We undertake a systematic study the resulting topological spaces and their basic topological properties.

[1]  Pawel Dlotko,et al.  A persistence landscapes toolbox for topological statistics , 2014, J. Symb. Comput..

[2]  Frédéric Chazal,et al.  An Introduction to Topological Data Analysis: Fundamental and Practical Aspects for Data Scientists , 2017, Frontiers in Artificial Intelligence.

[3]  Amit Patel,et al.  Categorified Reeb Graphs , 2015, Discret. Comput. Geom..

[4]  Theory of interleavings on $[0,\infty)$-actegories , 2017 .

[5]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[6]  Sayan Mukherjee,et al.  Fréchet Means for Distributions of Persistence Diagrams , 2012, Discrete & Computational Geometry.

[7]  Michael Lesnick,et al.  Algebraic Stability of Zigzag Persistence Modules , 2016, Algebraic & Geometric Topology.

[8]  L. Wasserman Topological Data Analysis , 2016, 1609.08227.

[9]  Vin de Silva,et al.  The observable structure of persistence modules , 2014, 1405.5644.

[10]  Killian Meehan,et al.  An Isometry Theorem for Generalized Persistence Modules , 2017, 1710.02858.

[11]  Peter Bubenik,et al.  Categorification of Persistent Homology , 2012, Discret. Comput. Geom..

[12]  James R. Munkres,et al.  Topology; a first course , 1974 .

[13]  Ulrich Bauer,et al.  Persistence Diagrams as Diagrams: A Categorification of the Stability Theorem , 2016, ArXiv.

[14]  Magnus Bakke Botnan,et al.  Computational Complexity of the Interleaving Distance , 2017, SoCG.

[15]  Amit Patel,et al.  Generalized persistence diagrams , 2016, J. Appl. Comput. Topol..

[16]  Steve Oudot,et al.  Persistence stability for geometric complexes , 2012, ArXiv.

[17]  Robert Ghrist,et al.  Homological algebra and data , 2018, IAS/Park City Mathematics Series.

[18]  Peter Bubenik,et al.  Statistical topological data analysis using persistence landscapes , 2012, J. Mach. Learn. Res..

[19]  Leonidas J. Guibas,et al.  Proximity of persistence modules and their diagrams , 2009, SCG '09.

[20]  Ulrich Bauer,et al.  Induced matchings and the algebraic stability of persistence barcodes , 2013, J. Comput. Geom..

[21]  W. Crawley-Boevey Decomposition of pointwise finite-dimensional persistence modules , 2012, 1210.0819.

[22]  Afra Zomorodian,et al.  The Theory of Multidimensional Persistence , 2007, SCG '07.

[23]  S. Mukherjee,et al.  Probability measures on the space of persistence diagrams , 2011 .

[24]  Michael Lesnick,et al.  The Theory of the Interleaving Distance on Multidimensional Persistence Modules , 2011, Found. Comput. Math..

[25]  R. Ghrist Barcodes: The persistent topology of data , 2007 .

[26]  Ville Puuska Erosion distance for generalized persistence modules , 2017 .

[27]  Leonidas J. Guibas,et al.  A Barcode Shape Descriptor for Curve Point Cloud Data , 2004, PBG.

[28]  Michael Lesnick,et al.  Universality of the Homotopy Interleaving Distance , 2017, ArXiv.

[29]  Vin de Silva,et al.  Higher Interpolation and Extension for Persistence Modules , 2016, SIAM J. Appl. Algebra Geom..

[31]  Andrew J. Blumberg,et al.  Robust Statistics, Hypothesis Testing, and Confidence Intervals for Persistent Homology on Metric Measure Spaces , 2012, Found. Comput. Math..

[32]  Cary Webb Decomposition of graded modules , 1985 .

[33]  Steve Oudot,et al.  The Structure and Stability of Persistence Modules , 2012, Springer Briefs in Mathematics.

[34]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..

[35]  Bei Wang,et al.  Convergence between Categorical Representations of Reeb Space and Mapper , 2015, SoCG.

[36]  J. Curry Sheaves, Cosheaves and Applications , 2013, 1303.3255.

[37]  Vin de Silva,et al.  Metrics for Generalized Persistence Modules , 2013, Found. Comput. Math..

[38]  P. Gabriel Unzerlegbare Darstellungen I , 1972 .