Topological spaces of persistence modules and their properties
暂无分享,去创建一个
[1] Pawel Dlotko,et al. A persistence landscapes toolbox for topological statistics , 2014, J. Symb. Comput..
[2] Frédéric Chazal,et al. An Introduction to Topological Data Analysis: Fundamental and Practical Aspects for Data Scientists , 2017, Frontiers in Artificial Intelligence.
[3] Amit Patel,et al. Categorified Reeb Graphs , 2015, Discret. Comput. Geom..
[4] Theory of interleavings on $[0,\infty)$-actegories , 2017 .
[5] Gunnar E. Carlsson,et al. Topology and data , 2009 .
[6] Sayan Mukherjee,et al. Fréchet Means for Distributions of Persistence Diagrams , 2012, Discrete & Computational Geometry.
[7] Michael Lesnick,et al. Algebraic Stability of Zigzag Persistence Modules , 2016, Algebraic & Geometric Topology.
[8] L. Wasserman. Topological Data Analysis , 2016, 1609.08227.
[9] Vin de Silva,et al. The observable structure of persistence modules , 2014, 1405.5644.
[10] Killian Meehan,et al. An Isometry Theorem for Generalized Persistence Modules , 2017, 1710.02858.
[11] Peter Bubenik,et al. Categorification of Persistent Homology , 2012, Discret. Comput. Geom..
[12] James R. Munkres,et al. Topology; a first course , 1974 .
[13] Ulrich Bauer,et al. Persistence Diagrams as Diagrams: A Categorification of the Stability Theorem , 2016, ArXiv.
[14] Magnus Bakke Botnan,et al. Computational Complexity of the Interleaving Distance , 2017, SoCG.
[15] Amit Patel,et al. Generalized persistence diagrams , 2016, J. Appl. Comput. Topol..
[16] Steve Oudot,et al. Persistence stability for geometric complexes , 2012, ArXiv.
[17] Robert Ghrist,et al. Homological algebra and data , 2018, IAS/Park City Mathematics Series.
[18] Peter Bubenik,et al. Statistical topological data analysis using persistence landscapes , 2012, J. Mach. Learn. Res..
[19] Leonidas J. Guibas,et al. Proximity of persistence modules and their diagrams , 2009, SCG '09.
[20] Ulrich Bauer,et al. Induced matchings and the algebraic stability of persistence barcodes , 2013, J. Comput. Geom..
[21] W. Crawley-Boevey. Decomposition of pointwise finite-dimensional persistence modules , 2012, 1210.0819.
[22] Afra Zomorodian,et al. The Theory of Multidimensional Persistence , 2007, SCG '07.
[23] S. Mukherjee,et al. Probability measures on the space of persistence diagrams , 2011 .
[24] Michael Lesnick,et al. The Theory of the Interleaving Distance on Multidimensional Persistence Modules , 2011, Found. Comput. Math..
[25] R. Ghrist. Barcodes: The persistent topology of data , 2007 .
[26] Ville Puuska. Erosion distance for generalized persistence modules , 2017 .
[27] Leonidas J. Guibas,et al. A Barcode Shape Descriptor for Curve Point Cloud Data , 2004, PBG.
[28] Michael Lesnick,et al. Universality of the Homotopy Interleaving Distance , 2017, ArXiv.
[29] Vin de Silva,et al. Higher Interpolation and Extension for Persistence Modules , 2016, SIAM J. Appl. Algebra Geom..
[31] Andrew J. Blumberg,et al. Robust Statistics, Hypothesis Testing, and Confidence Intervals for Persistent Homology on Metric Measure Spaces , 2012, Found. Comput. Math..
[32] Cary Webb. Decomposition of graded modules , 1985 .
[33] Steve Oudot,et al. The Structure and Stability of Persistence Modules , 2012, Springer Briefs in Mathematics.
[34] David Cohen-Steiner,et al. Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..
[35] Bei Wang,et al. Convergence between Categorical Representations of Reeb Space and Mapper , 2015, SoCG.
[36] J. Curry. Sheaves, Cosheaves and Applications , 2013, 1303.3255.
[37] Vin de Silva,et al. Metrics for Generalized Persistence Modules , 2013, Found. Comput. Math..
[38] P. Gabriel. Unzerlegbare Darstellungen I , 1972 .