Side-chain control of beta-peptide secondary structures.

As one of the most important families of non-natural polymers with the propensity to form well-defined secondary structures, the beta-peptides are attracting increasing attention. The compounds incorporating beta-amino acid residues have found various applications in medicinal chemistry and biochemistry. The conformational pool of beta-peptides comprises several periodic folded conformations, which can be classified as helices, and nonpolar and polar strands. The latter two are prone to form pleated sheets. The numerous studies that have been performed on the side-chain dependence of the stability of the folded structures allow certain conclusions concerning the principles of design of the beta-peptide foldamers. The folding propensity is influenced by local torsional, side-chain to backbone and long-range side-chain interactions. Although beta-peptide foldamers are sensitive to solvent, the systematic choice of the side-chain pattern and spatiality allows the design of the desired specific secondary structure. The application of beta-peptide foldamers may open up new directions in the synthesis of highly organized artificial tertiary structures with biochemical functions.

[1]  B. Jaun,et al.  Synthesis of β-hexa- and β-heptapeptides containing novel β2,3-amino acids with two serine or two cysteine side chains - CD- and NMR-spectroscopic evidence for 314-helical secondary structures in water , 2000 .

[2]  Samuel H. Gellman,et al.  Foldamers: A Manifesto , 1998 .

[3]  M. Hollósi,et al.  cis-2-aminocyclopentanecarboxylic acid oligomers adopt a sheetlike structure: switch from helix to nonpolar strand. , 2002, Angewandte Chemie.

[4]  F. Fülöp The Chemistry of 2-Aminocyclopentanecarboxylic Acid , 2001 .

[5]  W. DeGrado,et al.  De novo design of a monomeric helical beta-peptide stabilized by electrostatic interactions. , 2001, Journal of the American Chemical Society.

[6]  W. DeGrado,et al.  Long-range interactions stabilize the fold of a non-natural oligomer. , 2002, Journal of the American Chemical Society.

[7]  S. Gellman,et al.  Tolerance of acyclic residues in the beta-peptide 12-helix: access to diverse side-chain arrays for biological applications. , 2002, Journal of the American Chemical Society.

[8]  W. DeGrado,et al.  De Novo Design of Antibacterial β-Peptides , 1999 .

[9]  K. Kawabata,et al.  Synthesis and structure determination of FR109615, a new antifungal antibiotic. , 1990, The Journal of antibiotics.

[10]  D. Cole Recent stereoselective synthetic approaches to β-amino acids , 1994 .

[11]  D. Seebach,et al.  Cellular Uptake Studies with β‐Peptides , 2002 .

[12]  D. Seebach,et al.  The Outstanding Biological Stability of β‐ and γ‐Peptides toward Proteolytic Enzymes: An In Vitro Investigation with Fifteen Peptidases , 2001 .

[13]  K. Dill,et al.  Comparing folding codes for proteins and polymers , 1996, Proteins.

[14]  Douglas R. Powell,et al.  Antiparallel Sheet Formation in β-Peptide Foldamers: Effects of β-Amino Acid Substitution on Conformational Preference1 , 1997 .

[15]  L. Baltzer,et al.  De novo design of proteins--what are the rules? , 2001, Chemical reviews.

[16]  H. Hofmann,et al.  Theoretical Prediction of Substituent Effects on the Intrinsic Folding Properties of β-Peptides , 2002 .

[17]  Yun-Dong Wu,et al.  THEORETICAL STUDY ON SIDE-CHAIN CONTROL OF THE 14-HELIX AND THE 10/12-HELIX OF BETA -PEPTIDES , 1999 .

[18]  Samuel H. Gellman,et al.  β-Peptide Foldamers: Robust Helix Formation in a New Family of β-Amino Acid Oligomers , 1996 .

[19]  E. Juaristi,et al.  Recent advances in the enantioselective synthesis of beta-amino acids. , 1999, Current medicinal chemistry.

[20]  K. Wüthrich,et al.  Nmr-structural investigations of a β3-dodecapeptide with proteinogenic side chains in methanol and in aqueous solutions , 2002 .

[21]  Krzysztof Kuczera,et al.  Searching for Periodic Structures in β-Peptides , 2001 .

[22]  S. Gellman,et al.  Evidence that the β‐Peptide 14‐Helix is Stabilized by β3‐Residues with Side‐Chain Branching Adjacent to the β‐Carbon Atom , 2002 .

[23]  R. L. Baldwin,et al.  Tests for helix‐stabilizing interactions between various nonpolar side chains in alanine‐based peptides , 1994, Protein science : a publication of the Protein Society.

[24]  B. W. Gung,et al.  Characterization of a Water-Soluble, Helical β-Peptide , 1999 .

[25]  W. Goddard,et al.  Conformational Equilibria of β-Alanine and Related Compounds as Studied by NMR Spectroscopy , 1998 .

[26]  Yun-Dong Wu,et al.  Theoretical study of sheets formed by β‐peptides , 2002, J. Comput. Chem..

[27]  B. Jaun,et al.  Pleated Sheets and Turns of β-Peptides with Proteinogenic Side Chains. , 1999, Angewandte Chemie.

[28]  C. Tomasini,et al.  Asymmetric synthesis of ß-amino acids and α-substituted β-amino acids , 1996 .

[29]  X. Daura,et al.  Structure and Conformation ofβ-Oligopeptide Derivatives with Simple Proteinogenic Side Chains: Circular Dichroism and Molecular Dynamics Investigations , 2000 .

[30]  D P Glavin,et al.  Extraterrestrial amino acids in Orgueil and Ivuna: Tracing the parent body of CI type carbonaceous chondrites , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[31]  X. Daura,et al.  The beta-peptide hairpin in solution: conformational study of a beta-hexapeptide in methanol by NMR spectroscopy and MD simulation. , 2001, Journal of the American Chemical Society.

[32]  J. García Juaristi, Eusebio. Enantioselective synthesis of beta-amino acids. Nueva York, Wiley-VCH, 1997 , 1998 .

[33]  B. Jaun,et al.  β2‐ and β3‐Peptides with Proteinaceous Side Chains: Synthesis and solution structures of constitutional isomers, a novel helical secondary structure and the influence of solvation and hydrophobic interactions on folding , 1998 .

[34]  B. Jaun,et al.  β-Depsipeptides—the effect of a missing and a weakened hydrogen bond on the stability of the β-peptidic 314-helix , 2002 .

[35]  D. Seebach,et al.  Design, machine synthesis, and NMR-solution structure of a β-heptapeptide forming a salt-bridge stabilised 314-helix in methanol and in water , 2001 .

[36]  Ronald T. Raines,et al.  Translocation of a beta-peptide across cell membranes. , 2002, Journal of the American Chemical Society.

[37]  Samuel H. Gellman,et al.  Stereochemical Control of Hairpin Formation in β-Peptides Containing Dinipecotic Acid Reverse Turn Segments , 2000 .

[38]  D. Seebach,et al.  β-Peptides: a surprise at every turn , 1997 .

[39]  Abdel-Magid Af,et al.  Chemical process synthesis of beta-amino acids and esters. , 1999 .

[40]  S. Gellman,et al.  Toward beta-peptide tertiary structure: self-association of an amphiphilic 14-helix in aqueous solution. , 2001, Organic letters.

[41]  Yun-Dong Wu,et al.  Theoretical Studies of β-Peptide Models , 1998 .

[42]  N. Sewald Stereoselective synthesis ofβ-amino acids via conjugate addition of nitrogen nucleophiles toα,β-unsaturated esters — Recent advances , 1996, Amino Acids.

[43]  Matthew J. Mio,et al.  A field guide to foldamers. , 2001, Chemical reviews.

[44]  S. Gellman,et al.  Antibiotics: Non-haemolytic β-amino-acid oligomers , 2000, Nature.

[45]  Douglas R. Powell,et al.  A β-Peptide Reverse Turn that Promotes Hairpin Formation , 1998 .

[46]  D. Seebach,et al.  Preparation of Achiral and of Enantiopure Geminally Disubstituted β‐Amino Acids for β‐Peptide Synthesis , 2000 .

[47]  I. Ojima,et al.  Recent advances in the medicinal chemistry of taxoids with novel beta-amino acid side chains. , 1999, Current medicinal chemistry.

[48]  B. Jaun,et al.  NMR Structure in methanol of a β-hexapeptide with a disulfide clamp , 2000 .

[49]  Xavier Daura,et al.  β-Peptides with Different Secondary-Structure Preferences: How Different Are Their Conformational Spaces? , 2002 .

[50]  Ulrich Hommel,et al.  β‐Peptides: Synthesis by Arndt‐Eistert homologation with concomitant peptide coupling. Structure determination by NMR and CD spectroscopy and by X‐ray crystallography. Helical secondary structure of a β‐hexapeptide in solution and its stability towards pepsin , 1996 .

[51]  Stanley L. Miller,et al.  Production of Some Organic Compounds under Possible Primitive Earth Conditions1 , 1955 .

[52]  J. Porter Patent confusion in law on new plant varieties , 2000, Nature.

[53]  J. Goodman,et al.  10-Helical conformations in oxetane β-amino acid hexamers , 2001 .

[54]  S. Gellman,et al.  Solution Conformations of Helix-Forming β-Amino Acid Homooligomers , 2000 .

[55]  P. Balaram,et al.  Design of folded peptides. , 2001, Chemical reviews.

[56]  Yi-Lei Zhao,et al.  Theoretical Study of β-Peptide Models: Intrinsic Preferences of Helical Structures , 2002 .

[57]  P. Balaram,et al.  Stereochemistry of Peptides and Polypeptides Containing Omega Amino Acids , 1997 .

[58]  B. Huck,et al.  Stereochemical Control of Hairpin Formation in β-Peptides Containing Dinipecotic Acid Reverse Turn Segments. , 2000 .

[59]  K. Gademann,et al.  β‐Peptides: Twisting and Turning , 1999 .

[60]  P. Perlmutter,et al.  The use of β-amino acids in the design of protease and peptidase inhibitors , 2001, Letters in Peptide Science.

[61]  W. DeGrado,et al.  beta-Peptides: from structure to function. , 2001, Chemical reviews.

[62]  C. Alemán,et al.  Effects of electron correlation and the environment on the conformational preferences of the β-alanine dipeptide , 2000 .

[63]  P. Perlmutter,et al.  β-amino acids: Versatile peptidomimetics , 2002 .

[64]  I. Karle,et al.  Beta-Hairpins Generated from Hybrid Peptide Sequences Containing both Alpha- and Beta-Amino Acids , 2002 .

[65]  S. Knapp Synthesis of Complex Nucleoside Antibiotics , 1995 .

[66]  R. Raines,et al.  Protein Prosthesis: A Semisynthetic Enzyme with a β-Peptide Reverse Turn , 2002 .

[67]  Scarborough Rm Structure-activity relationships of beta-amino acid-containing integrin antagonists. , 1999 .

[68]  R. L. Baldwin,et al.  Helix-stabilizing interaction between tyrosine and leucine or valine when the spacing is i, i + 4. , 1994, Journal of molecular biology.

[69]  B. Jaun,et al.  "Mixed" β-peptides. A unique helical secondary structure in solution. Preliminary communication , 1997 .

[70]  Chris Sander,et al.  De novo design of proteins , 1991 .

[71]  M. Thormann,et al.  Basic conformers in beta-peptides. , 1999, Biopolymers.

[72]  D. Seebach,et al.  Preparation of N-Fmoc-Protected β2- and β3-Amino Acids and their use as building blocks for the solid-phase synthesis of β-peptides†‡ , 1998 .

[73]  Alanna Schepartz,et al.  Helix macrodipole control of β3-peptide 14-helix stability in water , 2003 .

[74]  B. Jaun,et al.  Mixed β2/β3-Hexapeptides and β2/β3-Nonapeptides Folding to (P)-Helices with Alternating Twelve- and Ten-Membered Hydrogen-Bonded Rings , 2002 .

[75]  Douglas R. Powell,et al.  Residue-based control of helix shape in β-peptide oligomers , 1997, Nature.

[76]  H. Kawaguchi,et al.  CISPENTACIN, A NEW ANTIFUNGAL ANTIBIOTIC , 1989 .