Incentives to Counter Bias in Human Computation

In online labor platforms such as Amazon Mechanical Turk, a good strategy to obtain quality answers is to take aggregate answers submitted by multiple workers, exploiting the wisdom of the crowd. However, human computation is susceptible to systematic biases which cannot be corrected by using multiple workers. We investigate a game-theoretic bonus scheme, called Peer Truth Serum (PTS), to overcome this problem. We report on the design and outcomes of a set of experiments to validate this scheme. Results show Peer Truth Serum can indeed correct the biases and increase the answer accuracy by up to 80%.

[1]  Ryan P. Adams,et al.  Trick or treat: putting peer prediction to the test , 2014 .

[2]  Jacki O'Neill,et al.  Turk-Life in India , 2014, GROUP.

[3]  D. Prelec A Bayesian Truth Serum for Subjective Data , 2004, Science.

[4]  Pascal Van Hentenryck,et al.  Crowdsourcing contest dilemma , 2014, Journal of The Royal Society Interface.

[5]  Boi Faltings,et al.  Incentive Mechanisms for Community Sensing , 2014, IEEE Transactions on Computers.

[6]  M. Six Silberman,et al.  Turkopticon: interrupting worker invisibility in amazon mechanical turk , 2013, CHI.

[7]  Jeffrey S. Rosenschein,et al.  Robust mechanisms for information elicitation , 2006, AAMAS '06.

[8]  Boi Faltings,et al.  Swissnoise: Online Polls with Game-Theoretic Incentives , 2014, AAAI.

[9]  Michael S. Bernstein,et al.  Boomerang: Rebounding the Consequences of Reputation Feedback on Crowdsourcing Platforms , 2016, UIST.

[10]  E. Horvitz,et al.  Incentives and Truthful Reporting in Consensus-centric Crowdsourcing , 2012 .

[11]  Mary L. Gray,et al.  The Crowd is a Collaborative Network , 2016, CSCW.

[12]  David C. Parkes,et al.  Designing incentives for online question and answer forums , 2009, EC '09.

[13]  Michael S. Bernstein,et al.  EmailValet: managing email overload through private, accountable crowdsourcing , 2013, CSCW.

[14]  Panagiotis G. Ipeirotis,et al.  Quality management on Amazon Mechanical Turk , 2010, HCOMP '10.

[15]  David C. Parkes,et al.  Peer prediction without a common prior , 2012, EC '12.

[16]  Anirban Dasgupta,et al.  Crowdsourced judgement elicitation with endogenous proficiency , 2013, WWW.

[17]  A. Tversky,et al.  Judgment under Uncertainty: Heuristics and Biases , 1974, Science.

[18]  Eric Horvitz,et al.  Incentives for truthful reporting in crowdsourcing , 2012, AAMAS.

[19]  Yuval Peres,et al.  Approval Voting and Incentives in Crowdsourcing , 2015, ICML.

[20]  Boi Faltings,et al.  A Robust Bayesian Truth Serum for Non-Binary Signals , 2013, AAAI.

[21]  Paul Resnick,et al.  Eliciting Informative Feedback: The Peer-Prediction Method , 2005, Manag. Sci..

[22]  Laura A. Dabbish,et al.  Working with Machines: The Impact of Algorithmic and Data-Driven Management on Human Workers , 2015, CHI.

[23]  Boi Faltings,et al.  Mechanisms for Making Crowds Truthful , 2014, J. Artif. Intell. Res..

[24]  Wai-Tat Fu,et al.  Don't hide in the crowd!: increasing social transparency between peer workers improves crowdsourcing outcomes , 2013, CHI.

[25]  Boi Faltings,et al.  Incentives for Effort in Crowdsourcing Using the Peer Truth Serum , 2016, ACM Trans. Intell. Syst. Technol..

[26]  Michael S. Bernstein,et al.  We Are Dynamo: Overcoming Stalling and Friction in Collective Action for Crowd Workers , 2015, CHI.

[27]  Alice M. Brawley,et al.  Work experiences on MTurk: Job satisfaction, turnover, and information sharing , 2016, Comput. Hum. Behav..

[28]  Joemon M. Jose,et al.  A Game-Theory Approach for Effective Crowdsource-Based Relevance Assessment , 2016, ACM Trans. Intell. Syst. Technol..

[29]  D. Helbing,et al.  How social influence can undermine the wisdom of crowd effect , 2011, Proceedings of the National Academy of Sciences.

[30]  Nihar B. Shah,et al.  Double or Nothing: Multiplicative Incentive Mechanisms for Crowdsourcing , 2014, J. Mach. Learn. Res..

[31]  Yoav Shoham,et al.  Eliciting truthful answers to multiple-choice questions , 2009, EC '09.

[32]  Laura A. Dabbish,et al.  Labeling images with a computer game , 2004, AAAI Spring Symposium: Knowledge Collection from Volunteer Contributors.

[33]  Carlos Guestrin,et al.  The Wisdom of Multiple Guesses , 2015, EC.

[34]  David C. Parkes,et al.  A Robust Bayesian Truth Serum for Small Populations , 2012, AAAI.

[35]  Aaron D. Shaw,et al.  Designing incentives for inexpert human raters , 2011, CSCW.

[36]  L. J. Savage Elicitation of Personal Probabilities and Expectations , 1971 .

[37]  Boi Faltings,et al.  An incentive compatible reputation mechanism , 2003, EEE International Conference on E-Commerce, 2003. CEC 2003..

[38]  Dan Cosley,et al.  Taking a HIT: Designing around Rejection, Mistrust, Risk, and Workers' Experiences in Amazon Mechanical Turk , 2016, CHI.

[39]  Sriram Vishwanath,et al.  Improving Impact Sourcing via Efficient Global Service Delivery , 2015 .

[40]  Wai-Tat Fu,et al.  Enhancing reliability using peer consistency evaluation in human computation , 2013, CSCW '13.

[41]  Christopher G. Harris You're Hired! An Examination of Crowdsourcing Incentive Models in Human Resource Tasks , 2011 .

[42]  Gjergji Kasneci,et al.  Crowd IQ: aggregating opinions to boost performance , 2012, AAMAS.

[43]  Boi Faltings,et al.  Incentives for Answering Hypothetical Questions , 2011 .

[44]  Panagiotis G. Ipeirotis Demographics of Mechanical Turk , 2010 .

[45]  Boi Faltings,et al.  Incentives for Truthful Information Elicitation of Continuous Signals , 2014, AAAI.

[46]  Nicholas R. Jennings,et al.  Mechanism design for the truthful elicitation of costly probabilistic estimates in distributed information systems , 2011, Artif. Intell..

[47]  Jacki O'Neill,et al.  Being a turker , 2014, CSCW.

[48]  David G. Rand,et al.  The online laboratory: conducting experiments in a real labor market , 2010, ArXiv.