Photosynthetic efficiency of microalgae and optimization of biomass production in photobioreactors

This thesis focuses on specific aspects of photosynthetic efficiency of microalgae and the optimization of the biomass production in outdoor photobioreactors (PBR). The conversion of waste products from a power plant (waste heat and flue gas as CO2 source) to microalgal biomass was investigated. If no nutrient limitation occurs the photosynthetic rate is either dominated by the temperature or light regime and the interplay between these and the culture conditions are one of the main topics of this work. It has been demonstrated how temperature affects microalgal photosynthesis and different temperature dependencies are found for specific strains (chapters 2, 5). Increased day temperatures resulted in increased productivities but are connected to high demands of waste heat. With solar tracked PBRs, the microalgal cultures are exposed to higher irradiance (up to 45%) compared to a static system, which leads to a higher biomass concentration and volumetric productivity (chapter 4 and 5). A controlled light supply in the “offset mode” enables low irradiance at low cell densities after inoculation at the initial outdoor cultivation phase (e.g. a small volume of preculture). High outdoor irradiance up to full sunlight (2000 µmol photons m-2 s-1) can be applied without photoinhibition by adequate self shading and cell mixing (chapter 4). However, analysis of the biomass yield over 24 hours indicated light saturation for high constant PAR (chapter 5). For adequate light/dark cycles mixing is required but the resulting shear stress affects the photosynthetic activity (chapter 3). For S. obliquus and C. vulgaris optimum tip speed of 126 cm s−1 were found related to optimization of the PBR design. In contrast, mixing did not enhance the photosynthetic activity of the structural sensitive C. reinhardtii. 78 % of the yearly outdoor biomass production is generated between March and September due to the higher und longer sun radiation (chapter 5). In conclusion, the most important key parameters for process optimization are continuous adjustment of the biomass concentration and the culture temperature with respect to the fluctuating weather conditions. This optimization of the key parameter resulted in a threefold increase of biomass productivity. For modification of the cellular carbon composition, N-limitation can be used to induce carbon storage product accumulation. However, the limitation stress results in a decrease of the photosynthetic parameters (chapter 6). If primary products of photosynthesis are not used to generate new daughter cells there might be a constant biomass yield on PAR during the shift from N-sufficient growth to initial N-limitation. Finally microalgae might develop to an alternative to traditional biomass sources based on agricultural crop land. To reach this goal process optimization is essential as suggested in chapter 7 and the presented study contributes by adding new information about temperature regulation, aspects of photosynthetic efficiencies and microalgal culture operation of photobioreactors. Die Produktion von Mikroalgenbiomasse wird als potentielle Alternative zu erschopflichen, erdolbasierten Rohstoffen und Energietragern angesehen. Vor diesem Hintergrund stehen die photosynthetische Effizienz der Mikroalgen und die Optimierung der Produktionsparameter im Mittelpunkt dieser Dissertation. Die Nutzung der Abfallprodukte CO2 (ca. 10 % des Abgases) und Abwarme eines Gaskraftwerks in die Mikroalgenkultivierung in Photobioreaktoren wurde auf Pilotmasstab getestet. Unterliegt das Wachstum der Mikroalgen keiner Nahrstofflimitierung bestimmen Licht- und Temperaturverhaltnisse im Freiland die Biomassenproduktion. Es wurde die Temperaturabhangigkeit der Photosynthese einzelner Mikroalgen gezeigt (Kapitel 2 & 5). Die Erhohung der durchschnittlichen Tagestemperatur des Kulturmediums war verbunden mit gesteigerter Produktivitat jedoch ebenso mit einem hohen Bedarf an Abwarme. Zur Sonne nachgefuhrte Photobioreaktoren ermoglichen eine um bis zu 45 % starkere Bestrahlung der Mikroalgenkultur verglichen mit horizontalen, statischen Anlagen. Die hohere Lichtmenge fuhrte zu hoherer Produktivitat und einer hoheren optimalen Zellkonzentration (Kapitel 4 & 5). Weiterhin konnte mittels Herausdrehen der Reaktoren aus direktem Sonnenlicht der Photobioreaktoren auch eine Reduktion des Lichtes im Freiland erreicht werden. Somit wurde die Photoinhibition verringert, was besonders bei niedrigen Zelldichten beispielsweise nach einem Kulturstart von Relevanz ist. Maximales Tageslicht von 2000 µmol Photonen m-2 s-1 photosynthetisch aktiver Strahlung (PAR) kann mit hoher Effizienz von Mikroalgen genutzt werden, wenn eine ausreichende Selbstverschattung der einzelnen Zellen gegeben ist. Diese wird durch starkes Mischen und der daraus resultierenden schnellen Oszillation der Zellen zwischen der lichtubersattigen und verschatteten Zonen im Photobioreaktor erreicht (Kapitel 4). Jedoch wurde eine Lichtsattigung bei hohen Tageslichtmengen (24 Stunden) fur die Biomassenausbeute pro Photon festgestellt. Starkes Mischen erzeugt hohe Scherkrafte, die einerseits positiv wirken, da sie hoheren Massentransfer ermoglichen, andererseits konnen Mikroalgen durch sie geschadigt werden. Fur Scenedesmus obliquus und Chlorella vulgaris wurde eine optimale Anstromgeschwindigkeit von 126 cm s−1 ermittelt. Bezogen auf die photosynthetische Aktivitat wurde fur Chlamydomonas reinhardtii mit sensitiverer Zellstruktur jedoch kein positiver Effekt festgestellt (Kapitel 3). Auf Grund der Freilandbedingungen und der unterschiedlichen Lichtverteilung im Jahresverlauf ergab eine Simulation, dass 78% der Biomassenproduktion zwischen Marz und September generiert wurde (Kapitel 5). Der wichtigste Schlusselparameter zur Optimierung der Biomassenproduktion ist neben Licht und Temperatur die kontinuierliche Regulierung der Biomassenkonzentration in Bezug auf die fluktuierenden Lichtverhaltnisse. Stickstofflimitierung wurde zur Erhohung der kohlenstoffreichen Speicherstoffe genutzt. Der Limitierungsstress wurde uber photosynthetische Parameter erfasst (Kapitel 6). Die Ergebnisse liefern Hinweise, dass bei anfanglicher Stickstofflimitierung der Biomassenaufbau trotz geringerer Photosyntheseleistung nicht reduziert ist. Die Biomassenproduktion durch Mikroalgen sollte vertieft erforscht werden, um nachhaltige, alternative Wege der Lebensmittel-, Futtermittel- und Biotreibstoffherstellung aufzuzeigen, die bisher vorwiegend auf fruchtbarem Ackerland basiert. Optimierungsvorschlage werden in Kapitel 7 vorgestellt und diskutiert, die einen Beitrag dazu leisten dieses Ziel zu erreichen.

[1]  A Anandraj,et al.  PAM fluorometry as a tool to assess microalgal nutrient stress and monitor cellular neutral lipids. , 2011, Bioresource technology.

[2]  Hu Hongying,et al.  Growth and nutrient removal properties of a freshwater microalga Scenedesmus sp. LX1 under different kinds of nitrogen sources , 2010 .

[3]  O. Pulz,et al.  Valuable products from biotechnology of microalgae , 2004, Applied Microbiology and Biotechnology.

[4]  P. Hartig,et al.  On the mass culture of microalgae: Areal density as an important factor for achieving maximal productivity , 1988 .

[5]  Yuan-Kun Lee,et al.  Growth of Chlorella outdoors in a changing light environment , 1997, Journal of Applied Phycology.

[6]  M. Negoro,et al.  Growth characteristics of microalgae in high-concentration co2 gas, effects of culture medium trace components, and impurities thereon , 1992 .

[7]  S. Ranjan,et al.  Photosynthetic characteristics and the response of stomata to environmental determinants and ABA in Selaginella bryopteris, a resurrection spike moss species. , 2012, Plant science : an international journal of experimental plant biology.

[8]  Jo‐Shu Chang,et al.  Photobioreactor strategies for improving the CO2 fixation efficiency of indigenous Scenedesmus obliquus CNW-N: statistical optimization of CO2 feeding, illumination, and operation mode. , 2012, Bioresource technology.

[9]  Johan U Grobbelaar,et al.  Factors governing algal growth in photobioreactors: the “open” versus “closed” debate , 2009, Journal of Applied Phycology.

[10]  T. Shikanai,et al.  Cyclic electron flow around photosystem I via chloroplast NAD(P)H dehydrogenase (NDH) complex performs a significant physiological role during photosynthesis and plant growth at low temperature in rice. , 2011, The Plant journal : for cell and molecular biology.

[11]  Navid Reza Moheimani,et al.  Limits to productivity of the alga Pleurochrysis carterae (Haptophyta) grown in outdoor raceway ponds , 2007, Biotechnology and bioengineering.

[12]  Boudewijn Meesschaert,et al.  Flocculation of microalgae using cationic starch , 2009, Journal of Applied Phycology.

[13]  Jianfeng Shen,et al.  The prediction of elemental composition of biomass based on proximate analysis , 2010 .

[14]  Arnaud Hélias,et al.  Life-cycle assessment of biodiesel production from microalgae. , 2009, Environmental science & technology.

[15]  T. Platt,et al.  An estimate of global primary production in the ocean from satellite radiometer data , 1995 .

[16]  M. Borowitzka Commercial production of microalgae: ponds, tanks, tubes and fermenters , 1999 .

[17]  R. Wijffels,et al.  Performance of Chlorella sorokiniana under simulated extreme winter conditions , 2011, Journal of Applied Phycology.

[18]  Ana Cristina Oliveira,et al.  Microalgae as a raw material for biofuels production , 2009, Journal of Industrial Microbiology & Biotechnology.

[19]  António A. Vicente,et al.  Nutrient limitation as a strategy for increasing starch accumulation in microalgae , 2011 .

[20]  P. Joliot,et al.  Cyclic electron flow in C3 plants. , 2006, Biochimica et biophysica acta.

[21]  Andrew Hoadley,et al.  Dewatering of microalgal cultures : a major bottleneck to algae-based fuels , 2010 .

[22]  K. Tran,et al.  Towards Sustainable Production of Biofuels from Microalgae , 2008, International journal of molecular sciences.

[23]  J. Doucha,et al.  Microalgae—novel highly efficient starch producers , 2011, Biotechnology and bioengineering.

[24]  Y. Chisti,et al.  Recovery of microalgal biomass and metabolites: process options and economics. , 2003, Biotechnology advances.

[25]  J. Grobbelaar,et al.  Photosynthetic characteristics of Spirulina platensis grown in commercial-scale open outdoor raceway ponds: what do the organisms tell us? , 2007, Journal of Applied Phycology.

[26]  Kristina M. Weyer,et al.  Theoretical Maximum Algal Oil Production , 2009, BioEnergy Research.

[27]  Irina Vaseva,et al.  A critical look at the microalgae biodiesel , 2012 .

[28]  A. Richmond,et al.  Effect of light-path length in outdoor flat plate reactors on output rate of cell mass and of EPA in Nannochloropsis sp. , 1999 .

[29]  C. Posten,et al.  Developments and perspectives of photobioreactors for biofuel production , 2010, Applied Microbiology and Biotechnology.

[30]  Jack Legrand,et al.  Theoretical investigation of biomass productivities achievable in solar rectangular photobioreactors for the cyanobacterium Arthrospira platensis , 2012, Biotechnology progress.

[31]  L. Laurens,et al.  Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics , 2010 .

[32]  D. Kramer,et al.  Regulating the proton budget of higher plant photosynthesis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Carlos Vílchez,et al.  Productivity of Chlorella sorokiniana in a short light‐path (SLP) panel photobioreactor under high irradiance , 2009, Biotechnology and bioengineering.

[34]  A. Sukenik,et al.  Algal autoflocculation—verification and proposed mechanism , 1984, Biotechnology and bioengineering.

[35]  Ø. Hammer,et al.  PAST: PALEONTOLOGICAL STATISTICAL SOFTWARE PACKAGE FOR EDUCATION AND DATA ANALYSIS , 2001 .

[36]  Y. Chisti Biodiesel from microalgae. , 2007, Biotechnology advances.

[37]  A. Melis,et al.  Solar energy conversion efficiencies in photosynthesis: Minimizing the chlorophyll antennae to maximize efficiency , 2009 .

[38]  J. Grobbelaar Turbulence in mass algal cultures and the role of light/dark fluctuations , 1994, Journal of Applied Phycology.

[39]  José M. Baptista,et al.  Light requirements in microalgal photobioreactors: an overview of biophotonic aspects , 2010, Applied Microbiology and Biotechnology.

[40]  G. Johnson Cyclic electron transport in C3 plants: fact or artefact? , 2004, Journal of experimental botany.

[41]  C. Wilhelm,et al.  Balancing the energy flow from captured light to biomass under fluctuating light conditions. , 2006, The New phytologist.

[42]  J. Grobbelaar,et al.  Respiration losses in planktonic green algae cultivated in raceway ponds , 1985 .

[43]  Yuan-Kun Lee Microalgal mass culture systems and methods: Their limitation and potential , 2001, Journal of Applied Phycology.

[44]  Jean-François Cornet,et al.  Calculation of Optimal Design and Ideal Productivities of Volumetrically-Lightened Photobioreactors using the Constructal Approach , 2010, 2011.03781.

[45]  Martin Kerner,et al.  Irradiance optimization of outdoor microalgal cultures using solar tracked photobioreactors , 2013, Bioprocess and Biosystems Engineering.

[46]  Carlos Vílchez,et al.  Horizontal or vertical photobioreactors? How to improve microalgae photosynthetic efficiency. , 2011, Bioresource technology.

[47]  Carlos Jiménez,et al.  Relationship between physicochemical variables and productivity in open ponds for the production of Spirulina: a predictive model of algal yield , 2003 .

[48]  J. Grobbelaar,et al.  The influence of nitrogen and phosphorus on algal growth and quality in outdoor mass algal cultures , 1987 .

[49]  Clemens Posten,et al.  Light distribution in a novel photobioreactor – modelling for optimization , 2001, Journal of Applied Phycology.

[50]  M. Negoro,et al.  Growth of Microalgae in High CO2 Gas and Effects of SOX and NOX , 1991, Applied biochemistry and biotechnology.

[51]  In Soo Suh,et al.  Photobioreactor engineering: Design and performance , 2003 .

[52]  J. Grobbelaar Microalgae mass culture: the constraints of scaling-up , 2011, Journal of Applied Phycology.

[53]  O. Skulberg Microalgae as a source of bioactive molecules – experience from cyanophyte research , 2000, Journal of Applied Phycology.

[54]  J. Randerson,et al.  Primary production of the biosphere: integrating terrestrial and oceanic components , 1998, Science.

[55]  J. Doucha,et al.  Utilization of flue gas for cultivation of microalgae Chlorella sp.) in an outdoor open thin-layer photobioreactor , 2005, Journal of Applied Phycology.

[56]  J. Reid Experimental Design and Data Analysis for Biologists , 2003 .

[57]  A. Vonshak,et al.  Photoadaptation, photoinhibition and productivity in the blue‐green alga, Spirulina platensis grown outdoors , 1992 .

[58]  Philip Owende,et al.  Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products , 2010 .

[59]  Giovanni Finazzi,et al.  The dynamics of photosynthesis. , 2008, Annual review of genetics.

[60]  Zechen Wu,et al.  Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium. , 2012, Bioresource technology.

[61]  R. Wijffels,et al.  An Outlook on Microalgal Biofuels , 2010, Science.

[62]  Johannes Tramper,et al.  Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects. , 2003, Biotechnology and bioengineering.

[63]  J. Grobbelaar,et al.  Modeling algal productivity in large outdoor cultures and waste treatment systems , 1990 .

[64]  A. Jacobson,et al.  Improved Algal Harvesting Using Suspended Air Flotation , 2009, Water environment research : a research publication of the Water Environment Federation.

[65]  Chris J. Hulatt,et al.  Energy efficiency of an outdoor microalgal photobioreactor sited at mid-temperate latitude. , 2011, Bioresource technology.

[66]  Lenneke de Winter,et al.  Photosynthetic efficiency of Chlorella sorokiniana in a turbulently mixed short light‐path photobioreactor , 2010, Biotechnology progress.

[67]  S. Beer,et al.  Measuring rates of photosynthesis of two tropical seagrasses by pulse amplitude modulated (PAM) fluorometry , 2000 .

[68]  S. Harrison,et al.  Lipid productivity as a key characteristic for choosing algal species for biodiesel production , 2009, Journal of Applied Phycology.

[69]  B. Kamm,et al.  Principles of biorefineries , 2004, Applied Microbiology and Biotechnology.

[70]  Zhengyu Hu,et al.  Enhancement of eicosapentaenoic acid (EPA) and γ-linolenic acid (GLA) production by manipulating algal density of outdoor cultures of Monodus subterraneus (Eustigmatophyta) and Spirulina platensis (Cyanobacteria) , 1997 .

[71]  Donald A. Jackson STOPPING RULES IN PRINCIPAL COMPONENTS ANALYSIS: A COMPARISON OF HEURISTICAL AND STATISTICAL APPROACHES' , 1993 .

[72]  I. Karube,et al.  CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae , 1995 .

[73]  Imogen Foubert,et al.  Evaluation of electro‐coagulation–flocculation for harvesting marine and freshwater microalgae , 2011, Biotechnology and bioengineering.

[74]  Q. Hu,et al.  Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. , 2011, Bioresource technology.

[75]  Maria J Barbosa,et al.  Microalgal production--a close look at the economics. , 2011, Biotechnology advances.

[76]  J. Grobbelaar Microalgal biomass production: challenges and realities , 2010, Photosynthesis Research.

[77]  C. Dussap,et al.  A Simple and reliable formula for assessment of maximum volumetric productivities in photobioreactors , 2009, Biotechnology progress.