Three decades of hyperspectral remote sensing of the Earth: a personal view.

Imaging spectrometry, or hyperspectral imaging as it is now called, has had a long history of development and measured acceptance by the scientific community. The impetus for the development of imaging spectrometry came in the 1970's from field spectral measurements in support of Landsat-1 data analysis. Progress required developments in electronics, computing and software throughout the 1980's and into the 1990's before a larger segment of the Earth observation community would embrace the technique. The hardware development took place at NASA/JPL beginning with the Airborne Imaging Spectrometer (AIS) in 1983. The airborne visible/infrared imaging spectrometer (AVIRIS) followed in 1987 and has proved to this day to be the prime provider of high-quality hyperspectral data for the scientific community. Other critical elements for the exploitation of this data source have been software, primarily ENVI, and field spectrometers such as those produced by Analytical Spectral Devices Inc. In addition, atmospheric correction algorithms have made it possible to reduce sensor radiance to spectral reflectance, the quantity required in all remote sensing applications. The applications cover the gambit of disciplines in Earth observations of the land and water. The further exploitation of hyperspectral imaging on a global basis awaits the launch of a high performance imaging spectrometer and more researchers with sufficient resources to take advantage of the vast information content inherent in the data.

[1]  Wallace M. Porter,et al.  The airborne visible/infrared imaging spectrometer (AVIRIS) , 1993 .

[2]  D. P. Elston,et al.  Application of ERTS images and image processing to regional geologic problems and geologic mapping in northern Arizona , 1975 .

[3]  A F Goetz,et al.  Mineral Identification from Orbit: Initial Results from the Shuttle Multispectral Infrared Radiometer , 1982, Science.

[4]  Christopher B. Field,et al.  Functional patterns in an annual grassland during an AVIRIS overflight , 1993 .

[5]  Thomas H. Painter,et al.  The Effect of Grain Size on Spectral Mixture Analysis of Snow-Covered Area from AVIRIS Data , 1998 .

[6]  A. Goetz,et al.  Proceedings of the Airborne Imaging Spectrometer Data Analysis Workshop , 1985 .

[7]  C. Wessman,et al.  Remote sensing of canopy chemistry and nitrogen cycling in temperate forest ecosystems , 1988, Nature.

[8]  Jeff Dozier,et al.  Estimating snow grain size using AVIRIS data , 1993 .

[9]  Yoram J. Kaufman,et al.  Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near‐infrared channels , 2003 .

[10]  David H. Levy Shoemaker by Levy: The Man Who Made an Impact , 2000 .

[11]  Donald E. White,et al.  Buddingtonite, an ammonium feldspar with zeolitic water , 1964 .

[12]  C. Davis,et al.  Model for the interpretation of hyperspectral remote-sensing reflectance. , 1994, Applied optics.

[13]  A. F. H. Goetz,et al.  Mineralogical Mapping in the Cuprite Mining District, Nevada , 1985 .

[14]  Paul E. Johnson,et al.  Quantitative determination of mineral types and abundances from reflectance spectra using principal components analysis , 1985 .

[15]  John D. Aber,et al.  High spectral resolution remote sensing of canopy chemistry , 1995 .

[16]  Christopher B. Field,et al.  Using AVIRIS images to measure temporal trends in abundance of photosynthetic and nonphotosynthetic canopy components , 1992 .

[17]  Stephen G. Ungar,et al.  Overview of the Earth Observing One (EO-1) mission , 2003, IEEE Trans. Geosci. Remote. Sens..

[18]  Christopher B. Field,et al.  Evaluation of spatial productivity patterns in an annual grassland during an AVIRIS overflight , 1992 .

[19]  D. C. Robertson,et al.  MODTRAN cloud and multiple scattering upgrades with application to AVIRIS , 1998 .

[20]  R. Clark,et al.  High spectral resolution reflectance spectroscopy of minerals , 1990 .

[21]  A. Goetz,et al.  Column atmospheric water vapor and vegetation liquid water retrievals from Airborne Imaging Spectrometer data , 1990 .

[22]  Mary E. Martin,et al.  HIGH SPECTRAL RESOLUTION REMOTE SENSING OF FOREST CANOPY LIGNIN, NITROGEN, AND ECOSYSTEM PROCESSES , 1997 .

[23]  Zheng Qu,et al.  HATCH: results from simulated radiances, AVIRIS and Hyperion , 2003, IEEE Trans. Geosci. Remote. Sens..

[24]  Jack S. Margolis,et al.  Atmospheric water mapping with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), Mountain Pass, California , 1988 .

[25]  J. Boardman Automating spectral unmixing of AVIRIS data using convex geometry concepts , 1993 .

[26]  A. Goetz,et al.  Quantitative reflectance spectroscopy of buddingtonite from the Cuprite mining district, Nevada , 1994 .

[27]  A F Goetz,et al.  Imaging Spectrometry for Earth Remote Sensing , 1985, Science.

[28]  D. Roberts,et al.  Green vegetation, nonphotosynthetic vegetation, and soils in AVIRIS data , 1993 .

[29]  Tim J. Malthus,et al.  The effect of spectral bandwidth and positioning on the spectral signature analysis of inland waters , 1992 .

[30]  Jessica A. Faust,et al.  Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1998 .

[31]  A. F. H. Goetz,et al.  Effect of vegetation on rock and soil type discrimination , 1977 .

[32]  A. Goetz,et al.  The high resolution imaging spectrometer (HIRIS) for Eos , 1989 .

[33]  Rudolf Richter Atmospheric correction of DAIS hyperspectral image data , 1996 .

[34]  Fred A. Kruse,et al.  The Spectral Image Processing System (SIPS) - Interactive visualization and analysis of imaging spectrometer data , 1993 .

[35]  S. J. Sutley,et al.  Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems , 2003 .

[36]  Alexander F. H. Goetz,et al.  Discrimination of rock types and detection of hydrothermally altered areas in south-central Nevada by the use of computer-enhanced ERTS images , 1974 .

[37]  Alexander F. H. Goetz,et al.  Terrestrial imaging spectrometry - Current status, future trends , 1993 .

[38]  P. Chavez An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data , 1988 .

[39]  D. Lobell,et al.  A Biogeophysical Approach for Automated SWIR Unmixing of Soils and Vegetation , 2000 .

[40]  Frederic Teston,et al.  The PROBA/CHRIS mission: a low-cost smallsat for hyperspectral multiangle observations of the Earth surface and atmosphere , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[41]  A. Goetz,et al.  Cirrus cloud detection from airborne imaging spectrometer data using the 1 , 1993 .

[42]  G. Hunt SPECTRAL SIGNATURES OF PARTICULATE MINERALS IN THE VISIBLE AND NEAR INFRARED , 1977 .

[43]  F. Muller‐Karger,et al.  AVIRIS calibration and application in coastal oceanic environments - Tracers of soluble and particulate constituents of the Tampa Bay coastal plume , 1993 .

[44]  S. J. Sutley,et al.  Using Imaging Spectroscopy To Map Acidic Mine Waste , 2000 .

[45]  Sabine Chabrillat,et al.  Use of hyperspectral images in the identification and mapping of expansive clay soils and the role of spatial resolution , 2002 .

[46]  Claudia M. Castaneda,et al.  Estimating Canopy Water Content of Chaparral Shrubs Using Optical Methods , 1998 .

[47]  F. M. Danson,et al.  Extraction of vegetation biophysical parameters by inversion of the PROSPECT + SAIL models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors , 1995 .

[48]  A. Goetz,et al.  Software for the derivation of scaled surface reflectances from AVIRIS data , 1992 .

[49]  Alan R. Gillespie,et al.  Vegetation in deserts. I - A regional measure of abundance from multispectral images. II - Environmental influences on regional abundance , 1990 .

[50]  Margaret E. Gardner,et al.  Mapping Chaparral in the Santa Monica Mountains Using Multiple Endmember Spectral Mixture Models , 1998 .

[51]  Anne B. Kahle,et al.  Mapping of hydrothermal alteration in the Cuprite mining district, Nevada, using aircraft scanner images for the spectral region 0.46 to 2.36µm , 1977 .

[52]  Alexander F. H. Goetz,et al.  The Portable Instant Display and Analysis Spectrometer (PIDAS) , 1987 .

[53]  A. Goetz,et al.  Airborne imaging spectrometer: A new tool for remote sensing , 1984, IEEE Transactions on Geoscience and Remote Sensing.

[54]  H. Mark Chemometrics in near-infrared spectroscopy , 1989 .