Experimental study of vortex emission behind bluff obstacles in a gas liquid vertical two-phase flow

Abstract Vortex emission behind cylinders with trapezoidal cross section was experimentally studied in air-water vertical two-phase flows (liquid velocities vary from 45 cm/s to 2 m/s inside a 15 cm ID pipe); the void fraction ranged from 0 to 25%. The measurements were performed at room pressure and temperature. Two flow regimes were observed. For void fraction smaller than 10% vortex emission remained stable and its frequency sharply defined. However, the rms amplitude of the associated pressure fluctuations strongly decreased. These results were explained by bubble trapping inside the vortex cores. This effect was verified experimentally and analyzed using optical fiber probe measurements. Above a 10% void fraction, vortex emission became erratic. Its spectrum became broader but could be identified up to 25% void fraction.