Axioms of Adaptivity with Separate Marking for Data Resolution

Mixed finite element methods with flux errors in $H({div})$-norms and div-least-squares finite element methods require a separate marking strategy in obligatory adaptive mesh-refining. The refinement indicator $\sigma^2(\mathcal{T},K)=\eta^2(\mathcal{T},K)+\mu^2(K)$ of a finite element domain $K$ in an admissible triangulation $\mathcal{T}$ consists of some residual-based error estimator $\eta(\mathcal{T},K)$ with some reduction property under local mesh-refining and some data approximation error $\mu(K)$. Separate marking means either Dorfler marking if $\mu^2(\mathcal{T})\leq\kappa\eta^2(\mathcal{T})$ or otherwise an optimal data approximation algorithm with controlled accuracy. The axioms are sufficient conditions on the estimators $\eta(\mathcal{T},K)$ and data approximation errors $\mu(K)$ for optimal asymptotic convergence rates. The enfolded set of axioms of this paper simplifies [C. Carstensen, M. Feischl, M. Page, and D. Praetorius, Comput. Math. Appl., 67 (2014), pp. 1195--1253] for collective m...

[1]  Carsten Carstensen,et al.  Error analysis of nonconforming and mixed FEMs for second-order linear non-selfadjoint and indefinite elliptic problems , 2014, Numerische Mathematik.

[2]  Christian Kreuzer,et al.  Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..

[3]  Ronald A. DeVore,et al.  Fast computation in adaptive tree approximation , 2004, Numerische Mathematik.

[4]  Rob P. Stevenson,et al.  Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..

[5]  Carsten Carstensen,et al.  The norm of a discretized gradient in $$\varvec{H({{\mathrm{div}}})^*}$$H(div)∗ for a posteriori finite element error analysis , 2016, Numerische Mathematik.

[6]  Carsten Carstensen,et al.  Convergence and Optimality of Adaptive Least Squares Finite Element Methods , 2015, SIAM J. Numer. Anal..

[7]  Jianguo Huang,et al.  Convergence and complexity of arbitrary order adaptive mixed element methods for the Poisson equation , 2012 .

[8]  Carsten Carstensen,et al.  A posteriori error estimate for the mixed finite element method , 1997, Math. Comput..

[9]  A. Alonso Error estimators for a mixed method , 1996 .

[10]  Carsten Carstensen,et al.  An Adaptive Least-Squares FEM for Linear Elasticity with Optimal Convergence Rates , 2018, SIAM J. Numer. Anal..

[11]  Carsten Carstensen,et al.  The norm of a discretized gradient in H ( div ) ∗ for a posteriori finite element error analysis , 2015 .

[12]  Carsten Carstensen,et al.  An optimal adaptive mixed finite element method , 2011, Math. Comput..

[13]  Shipeng Mao,et al.  An optimally convergent adaptive mixed finite element method , 2008, Numerische Mathematik.

[14]  Long Chen,et al.  Convergence and optimality of adaptive mixed finite element methods , 2010, Math. Comput..

[15]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[16]  Hella Rabus Quasi-optimal convergence of AFEM based on separate marking, Part I , 2015 .

[17]  Ricardo H. Nochetto,et al.  Convergence Rates of AFEM with H−1 Data , 2012, Found. Comput. Math..

[18]  M. Dauge Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions , 1988 .

[19]  ROB STEVENSON,et al.  The completion of locally refined simplicial partitions created by bisection , 2008, Math. Comput..

[20]  Rob P. Stevenson,et al.  A Remark on Newest Vertex Bisection in Any Space Dimension , 2014, Comput. Methods Appl. Math..

[21]  Ferdinando Auricchio,et al.  Mixed Finite Element Methods , 2004 .

[22]  Carsten Carstensen,et al.  Axioms of adaptivity , 2013, Comput. Math. Appl..

[23]  Carsten Carstensen,et al.  An adaptive least-squares FEM for the Stokes equations with optimal convergence rates , 2017, Numerische Mathematik.

[24]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .