Hiérarchies de Concaténation

Is it well-known that there exists a one-to-one correspondence between varieties of recognizable languages and varieties of finite semigroups. New hierarchies of varieties of languages (based on the concatenation product) are defined and an algebraic description of the corresponding hierarchies of varieties of semigroups is given. Various well-known hierarchies are obtained as particular cases. The construction is based on the following result: if a language L is recognized by the Schutzenberger product of the monoids M_0, ..., M_n, then L belongs to the Boolean closure of the set of languages of the form L_{i_0}a_1L_{i_1} ... a_rL_{i_r} (0 ≤ i_0 < i_1 < ... < i_r ≤ n) where the ak are letters and the Lik are recognized by M_{i_k} (0 ≤ k ≤ r). Decidability and inclusion problems are also discussed.

[1]  G. Lallement Semigroups and combinatorial applications , 1979 .

[2]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[3]  Janusz A. Brzozowski,et al.  Characterizations of locally testable events , 1973, Discret. Math..

[4]  Jacques Sakarovitch,et al.  Une Application de la Representation Matricielle des Transductions , 1985, Theor. Comput. Sci..

[5]  Janusz A. Brzozowski,et al.  Characterizations of locally testable events , 1971, Discret. Math..

[6]  Christophe Reutenauer,et al.  Sur les variétés de langages et de monoídes , 1979, Theoretical Computer Science.

[7]  Howard Straubing,et al.  A Generalization of the Schützenberger Product of Finite Monoids , 1981, Theor. Comput. Sci..

[8]  Howard Straubing,et al.  Monoids of upper triangular boolean matrices , 1981 .

[9]  Howard Straubing,et al.  FINITE SEMIGROUP VARIETIES OF THE FORM V,D , 1985 .

[10]  Robert Knast Some Theorems on Graph Congruences , 1983, RAIRO Theor. Informatics Appl..

[11]  Janusz A. Brzozowski,et al.  The Dot-Depth Hierarchy of Star-Free Languages is Infinite , 1978, J. Comput. Syst. Sci..

[12]  Robert Knast,et al.  A Semigroup Characterization of Dot-Depth one Languages , 1983, RAIRO Theor. Informatics Appl..

[13]  Janusz A. Brzozowski,et al.  Hierarchies of Aperiodic Languages , 1976, RAIRO Theor. Informatics Appl..

[14]  Imre Simon,et al.  Piecewise testable events , 1975, Automata Theory and Formal Languages.