Flow front advancement during composite processing: Predictions from numerical filling simulation tools in comparison with real-world experiments

Liquid composite molding (LCM) techniques are innovative manufacturing processes for processing fiber reinforced polymer parts used e.g. for aerospace structures. Thereby the reinforcing material is placed in a mold and infiltrated with a low viscosity polymer matrix. Increasing production rates as well as part complexity lead to high production risks such as air inclusions or incomplete mold filling. Numerical mold filling simulations are promising tools enabling the composite manufacturing engineer to detect dry spots in the mold and find the optimal positions of the resin entry and ventilation system at an early process development stage. Today, different numerical models and software packages are available for modeling the flow through the reinforcing structure for visualization of the flow behavior. The goal of this study is the systematic comparison of two different software packages, namely PAM-RTM® and OpenFOAM. Both software tools are operated as they are commonly foreseen. Real world experiments under real process conditions are the basis for the assessment of the numerical predictions. The resin transfer molding (RTM) experiments are executed in a tool with a transparent upper mold half in order to see the flow front advancement. POLYM. COMPOS., 2015. © 2015 Society of Plastics Engineers

[1]  J. A. Souza,et al.  Three-dimensional numerical modeling of RTM and LRTM processes , 2012 .

[2]  Suresh G. Advani,et al.  Characterization of 3D fiber preform permeability tensor in radial flow using an inverse algorithm based on sensors and simulation , 2011 .

[3]  J. A. Souza,et al.  A numerical investigation of the resin flow front tracking applied to the RTM process , 2011 .

[4]  N. Himmel,et al.  Structurally stitched NCF CFRP laminates. Part 1: Experimental characterization of in-plane and out-of-plane properties , 2011 .

[5]  H. Hess,et al.  Structurally stitched NCF CFRP laminates. Part 2: Finite element unit cell based prediction of in-plane strength , 2011 .

[6]  Piaras Kelly,et al.  A comprehensive filling and tooling force analysis for rigid mould LCM processes , 2009 .

[7]  S. Joshi Reducing loss of resin flowing in porous fibrous media in simulation of composites fabrication , 2009 .

[8]  Bart Verleye,et al.  Computation of the Permeability of Multi-Scale Porous Media with Application to Technical Textiles (Berekening van de permeabiliteit van meerschalige poreuze materie toegepast op technisch textiel) , 2008 .

[9]  L. Ye,et al.  Functionalized composite structures for new generation airframes: a review , 2005 .

[10]  Z. Dimitrovová,et al.  Free boundary viscous flows at micro and mesolevel during liquid composites moulding process , 2004 .

[11]  Suresh G. Advani,et al.  Desirable features in mold filling simulations for Liquid Composite Molding processes , 2004 .

[12]  T. Stöven Beitrag zur Ermittlung der Permeabilität von flächigen Faserhalbzeugen , 2004 .

[13]  Peter Mitschang,et al.  Continuous monitoring of three-dimensional resin flow through a fibre preform , 2003 .

[14]  Suresh G. Advani,et al.  A Method to Determine 3D Permeability of Fibrous Reinforcements , 2002 .

[15]  Christian Kissinger Ganzheitliche Betrachtung der Harzinjektionstechnik - Messsystem zur durchgängigen Fertigungskontrolle , 2001 .

[16]  Xiao-lin Liu Isothermal flow simulation of liquid composite molding , 2000 .

[17]  Peter Mitschang,et al.  Approach to net-shape preforming using textile technologies. Part II: holes , 2000 .

[18]  Suresh G. Advani,et al.  Fabric structure and mold curvature effects on preform permeability and mold filling in the RTM process. Part I. Experiments , 2000 .

[19]  Suresh G. Advani,et al.  Fabric structure and mold curvature effects on preform permeability and mold filling in the RTM process. Part II. Predictions and comparisons with experiments , 2000 .

[20]  P. Lafleur,et al.  Numerical simulation of resin transfer molding using linear boundary element method , 1999 .

[21]  H.G.S.J. Thuis,et al.  Development of a composite cargo door for an aircraft , 1999 .

[22]  Frederick R. Phelan,et al.  Simulation of the injection process in resin transfer molding , 1997 .

[23]  S. Whitaker Flow in porous media I: A theoretical derivation of Darcy's law , 1986 .

[24]  Ralf Schledjewski,et al.  An evaluation of the reproducibility of capacitive sensor based in-plane permeability measurements: A benchmarking study , 2015 .

[25]  Bart Verleye,et al.  Prediction and experimental verification of normal stress distributions on mould tools during Liquid Composite Moulding , 2012 .

[26]  G. Rieber Einfluss von textilen Parametern auf die Permeabilität von Multifilamentgeweben für Faserverbundkunststoffe , 2011 .

[27]  Gion Andrea Barandun,et al.  Injection strategies for liquid composite moulding processes , 2009 .

[28]  D. J. Wilkins,et al.  The influence of preform joints on the processing of RTM composites , 1995 .

[29]  K. N. Kendall,et al.  Characterization of the resin transfer moulding process , 1992 .