microRNA-9 targets the long non-coding RNA MALAT1 for degradation in the nucleus

microRNAs regulate the expression of over 60% of protein coding genes by targeting their mRNAs to AGO2-containing complexes in the cytoplasm and promoting their translational inhibition and/or degradation. There is little evidence so far for microRNA-mediated regulation of other classes of non-coding RNAs. Here we report that microRNA-9 (miR-9) regulates the expression of the Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT-1), one of the most abundant and conserved long non-coding RNAs. Intriguingly, we find that miR-9 targets AGO2-mediated regulation of MALAT1 in the nucleus. Our findings reveal a novel direct regulatory link between two important classes of non-coding RNAs, miRs and lncRNAs, and advance our understanding of microRNA functions.

[1]  Alfred Simkin,et al.  MicroRNA-9 , 2011, RNA Biology.

[2]  D. Cacchiarelli,et al.  A Long Noncoding RNA Controls Muscle Differentiation by Functioning as a Competing Endogenous RNA , 2011, Cell.

[3]  David G. Knowles,et al.  The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression , 2012, Genome research.

[4]  S. Freier,et al.  Control of RNA processing by a large non‐coding RNA over‐expressed in carcinomas , 2011, FEBS letters.

[5]  Nicholas T. Ingolia,et al.  Mammalian microRNAs predominantly act to decrease target mRNA levels , 2010, Nature.

[6]  K. Holmstrøm,et al.  A Sensitive Alternative for MicroRNA In Situ Hybridizations Using Probes of 2′-O-Methyl RNA + LNA , 2011, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[7]  Annick Harel-Bellan,et al.  Argonaute proteins couple chromatin silencing to alternative splicing , 2012, Nature Structural &Molecular Biology.

[8]  P. Schirmacher,et al.  Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development , 2012, RNA biology.

[9]  K. Kristiansen,et al.  Single base–resolution methylome of the silkworm reveals a sparse epigenomic map , 2010, Nature Biotechnology.

[10]  Cole Trapnell,et al.  Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.

[11]  M. Noguchi,et al.  Phenotypic characterization of endometrial stromal sarcoma of the uterus , 2006, Cancer science.

[12]  Marie C. M. Lin,et al.  Anthracyclines disrupt telomere maintenance by telomerase through inducing PinX1 ubiquitination and degradation , 2012, Oncogene.

[13]  G. Meister,et al.  Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy reveal the cytoplasmic origination of loaded nuclear RISC in vivo in human cells , 2008, Nucleic acids research.

[14]  John N. Hutchinson,et al.  A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains , 2007, BMC Genomics.

[15]  David L. Spector,et al.  3′ End Processing of a Long Nuclear-Retained Noncoding RNA Yields a tRNA-like Cytoplasmic RNA , 2008, Cell.

[16]  Zhaoshi Jiang,et al.  Tumour‐secreted miR‐9 promotes endothelial cell migration and angiogenesis by activating the JAK‐STAT pathway , 2012, The EMBO journal.

[17]  Jørgen Kjems,et al.  miRNA‐dependent gene silencing involving Ago2‐mediated cleavage of a circular antisense RNA , 2011, The EMBO journal.

[18]  J. Eberwine,et al.  Immunoprecipitation of mRNA-protein complexes , 2006, Nature Protocols.

[19]  L Leoncini,et al.  Inhibition of miR-9 de-represses HuR and DICER1 and impairs Hodgkin lymphoma tumour outgrowth in vivo , 2012, Oncogene.

[20]  Phillip A. Sharp,et al.  microRNAs: A Safeguard against Turmoil? , 2007, Cell.

[21]  J. Steitz,et al.  Formation of triple-helical structures by the 3′-end sequences of MALAT1 and MENβ noncoding RNAs , 2012, Proceedings of the National Academy of Sciences.

[22]  Shinichi Nakagawa,et al.  Malat1 is not an essential component of nuclear speckles in mice. , 2012, RNA.

[23]  R. Giegerich,et al.  Fast and effective prediction of microRNA/target duplexes. , 2004, RNA.

[24]  B. Blencowe,et al.  The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. , 2010, Molecular cell.

[25]  S. Salzberg,et al.  The Transcriptional Landscape of the Mammalian Genome , 2005, Science.

[26]  Michael Thomas,et al.  MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer , 2003, Oncogene.

[27]  M. Esteller Non-coding RNAs in human disease , 2011, Nature Reviews Genetics.

[28]  P. Pandolfi,et al.  A ceRNA Hypothesis: The Rosetta Stone of a Hidden RNA Language? , 2011, Cell.

[29]  A. Mantovani,et al.  Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals , 2009, Proceedings of the National Academy of Sciences.

[30]  W. Filipowicz,et al.  The widespread regulation of microRNA biogenesis, function and decay , 2010, Nature Reviews Genetics.

[31]  Phillip A Sharp,et al.  A triple helix stabilizes the 3' ends of long noncoding RNAs that lack poly(A) tails. , 2012, Genes & development.

[32]  Cole Trapnell,et al.  Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. , 2011, Genes & development.

[33]  Michael Q. Zhang,et al.  A long nuclear‐retained non‐coding RNA regulates synaptogenesis by modulating gene expression , 2010, EMBO Journal.

[34]  Chaolin Zhang,et al.  The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. , 2012, Cell reports.

[35]  M. Karin,et al.  A large noncoding RNA is a marker for murine hepatocellular carcinomas and a spectrum of human carcinomas , 2007, Oncogene.

[36]  D. Spector,et al.  The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. , 2013, Cancer research.

[37]  Piero Carninci,et al.  Chromatin-associated RNAi components contribute to transcriptional regulation in Drosophila , 2011, Nature.