Computing ergodic limits for Langevin equations

[1]  M. V. Tretyakov,et al.  Stochastic Numerics for Mathematical Physics , 2004, Scientific Computation.

[2]  Jonathan C. Mattingly,et al.  An adaptive Euler-Maruyama scheme for SDEs: convergence and stability , 2006, IMA Journal of Numerical Analysis.

[3]  G. N. Milstein,et al.  Numerical Integration of Stochastic Differential Equations with Nonglobally Lipschitz Coefficients , 2005, SIAM J. Numer. Anal..

[4]  J. M. Sancho,et al.  From subdiffusion to superdiffusion of particles on solid surfaces. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[6]  G. N. Milstein,et al.  Quasi‐symplectic methods for Langevin‐type equations , 2003 .

[7]  B. Leimkuhler,et al.  Generalized dynamical thermostating technique. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Jesús A. Izaguirre,et al.  An impulse integrator for Langevin dynamics , 2002 .

[9]  Jonathan C. Mattingly,et al.  Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise , 2002 .

[10]  G. N. Milstein,et al.  Numerical Methods for Stochastic Systems Preserving Symplectic Structure , 2002, SIAM J. Numer. Anal..

[11]  Andrew M. Stuart,et al.  Strong Convergence of Euler-Type Methods for Nonlinear Stochastic Differential Equations , 2002, SIAM J. Numer. Anal..

[12]  G. N. Milstein,et al.  Symplectic Integration of Hamiltonian Systems with Additive Noise , 2001, SIAM J. Numer. Anal..

[13]  Pep Español,et al.  Large scale and mesoscopic hydrodynamics for dissipative particle dynamics , 2001 .

[14]  R. Skeel,et al.  Langevin stabilization of molecular dynamics , 2001 .

[15]  B. Sawford,et al.  Turbulent relative dispersion , 2001 .

[16]  Tamar Schlick,et al.  Inertial stochastic dynamics. I. Long-time-step methods for Langevin dynamics , 2000 .

[17]  K. Lindenberg,et al.  One-dimensional arrays of oscillators: Energy localization in thermal equilibrium , 1999, cond-mat/9905003.

[18]  Robert D. Skeel,et al.  Integration Schemes for Molecular Dynamics and Related Applications , 1999 .

[19]  Michael V. Tretyakov,et al.  Numerical Methods in the Weak Sense for Stochastic Differential Equations with Small Noise , 1997 .

[20]  R. Tweedie,et al.  Exponential convergence of Langevin distributions and their discrete approximations , 1996 .

[21]  Christian Soize,et al.  The Fokker-Planck Equation for Stochastic Dynamical Systems and Its Explicit Steady State Solutions , 1994, Series on Advances in Mathematics for Applied Sciences.

[22]  D. Talay Second-order discretization schemes of stochastic differential systems for the computation of the invariant law , 1990 .

[23]  Bruce J. West,et al.  The Nonequilibrium Statistical Mechanics of Open and Closed Systems , 1990 .

[24]  D. Thomson Criteria for the selection of stochastic models of particle trajectories in turbulent flows , 1987, Journal of Fluid Mechanics.

[25]  R. Khasminskii Stochastic Stability of Differential Equations , 1980 .

[26]  J. D. Doll,et al.  Brownian dynamics as smart Monte Carlo simulation , 1978 .

[27]  M. M. Tropper Ergodic and quasideterministic properties of finite-dimensional stochastic systems , 1977 .

[28]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[29]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[30]  Edward Nelson Dynamical Theories of Brownian Motion , 1967 .