Surface radio-mineralisation mediates chelate-free radiolabelling of iron oxide nanoparticles† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c8sc04895a

Mineralisation of radio-metals onto the surface of iron oxide nanoparticles simplifies radiolabelling, enabling quantification of their bio-distribution with nuclear imaging.

[1]  Mark F. Lythgoe,et al.  Magnet-Targeted Delivery and Imaging , 2017 .

[2]  Andrea Protti,et al.  Synthesis of 64CuII–Bis(dithiocarbamatebisphosphonate) and Its Conjugation with Superparamagnetic Iron Oxide Nanoparticles: In Vivo Evaluation as Dual-Modality PET–MRI Agent** , 2011, Angewandte Chemie.

[3]  Morteza Mahmoudi,et al.  Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. , 2016, Nature nanotechnology.

[4]  Georges El Fakhri,et al.  Heat-Induced Radiolabeling of Nanoparticles for Monocyte Tracking by PET. , 2015, Angewandte Chemie.

[5]  Q. Pankhurst,et al.  Hyperthermia treatment of tumors by mesenchymal stem cell-delivered superparamagnetic iron oxide nanoparticles , 2016, International journal of nanomedicine.

[6]  Q. Pankhurst,et al.  Magnetic nanoparticles for in vivo use: a critical assessment of their composition. , 2014, The journal of physical chemistry. B.

[7]  Q. Pankhurst,et al.  High performance multi-core iron oxide nanoparticles for magnetic hyperthermia: microwave synthesis, and the role of core-to-core interactions. , 2015, Nanoscale.

[8]  Thomas J. Macdonald,et al.  Thiol-Capped Gold Nanoparticles Swell-Encapsulated into Polyurethane as Powerful Antibacterial Surfaces Under Dark and Light Conditions , 2016, Scientific Reports.

[9]  R. Howe,et al.  An x-ray photoelectron study of metal clusters in zeolites , 1989 .

[10]  Alice M. Bowen,et al.  Chelate-free metal ion binding and heat-induced radiolabeling of iron oxide nanoparticles† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4sc02778g Click here for additional data file. , 2014, Chemical science.

[11]  H. Yamatera,et al.  X-ray photoelectron spectroscopy of rare-earth compounds , 1984 .

[12]  A. Lu,et al.  Magnetic nanoparticles: synthesis, protection, functionalization, and application. , 2007, Angewandte Chemie.

[13]  C. Anderson,et al.  Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. , 2010, Chemical reviews.

[14]  Mingyuan Gao,et al.  In situ 111In-doping for achieving biocompatible and non-leachable 111In-labeled Fe3O4 nanoparticles. , 2014, Chemical communications.

[15]  C. Bárcena,et al.  APPLICATIONS OF MAGNETIC NANOPARTICLES IN BIOMEDICINE , 2003 .

[16]  M. Meyerand,et al.  Intrinsically Germanium‐69‐Labeled Iron Oxide Nanoparticles: Synthesis and In‐Vivo Dual‐Modality PET/MR Imaging , 2014, Advanced materials.

[17]  Q. Pankhurst,et al.  Applications of magnetic nanoparticles in biomedicine , 2003 .

[18]  Q. Pankhurst,et al.  On the ‘centre of gravity’ method for measuring the composition of magnetite/maghemite mixtures, or the stoichiometry of magnetite-maghemite solid solutions, via 57Fe Mössbauer spectroscopy , 2017 .

[19]  A. Koretsky,et al.  Controlled Aggregation of Ferritin to Modulate Mri Relaxivity for Publication as Full Paper , 2008 .

[20]  S. Park,et al.  Dramatic enhancement of the saturation magnetization of a sol-gel synthesized Y3Fe5O12 by a mechanical pressing process , 2017 .

[21]  Kai Liu,et al.  Rapid size-controlled synthesis of dextran-coated, 64Cu-doped iron oxide nanoparticles. , 2012, ACS nano.

[22]  M. Lythgoe,et al.  Advanced cell therapies: targeting, tracking and actuation of cells with magnetic particles. , 2015, Regenerative medicine.

[23]  Georges El Fakhri,et al.  Heat-induced radiolabeling and fluorescence labeling of Feraheme nanoparticles for PET/SPECT imaging and flow cytometry , 2018, Nature Protocols.

[24]  Q. Pankhurst,et al.  Magnetic hyperthermia controlled drug release in the GI tract: solving the problem of detection , 2016, Scientific Reports.

[25]  Pauliina Lehtolainen,et al.  Magnetic tagging increases delivery of circulating progenitors in vascular injury. , 2009, JACC. Cardiovascular interventions.

[26]  Jason P. Holland,et al.  Advanced Methods for Radiolabeling Multimodality Nanomedicines for SPECT/MRI and PET/MRI , 2017, The Journal of Nuclear Medicine.

[27]  Hao Hong,et al.  Chelator-free synthesis of a dual-modality PET/MRI agent. , 2013, Angewandte Chemie.

[28]  Emily B. Ehlerding,et al.  Multimodality Imaging Agents with PET as the Fundamental Pillar. , 2019, Angewandte Chemie.