Differential network analysis and protein-protein interaction study reveals active protein modules in glucocorticoid resistance for infant acute lymphoblastic leukemia

[1]  A. Zelenetz,et al.  Acute lymphoblastic leukemia. , 2019, Journal of the National Comprehensive Cancer Network : JNCCN.

[2]  R. Stam,et al.  Network-based expression analysis reveals key genes related to glucocorticoid resistance in infant acute lymphoblastic leukemia , 2016, Cellular Oncology.

[3]  T. Graeber,et al.  Metabolic gatekeeper function of B-lymphoid transcription factors , 2016, Nature.

[4]  A. Butte,et al.  Cross-tissue Analysis of Gene and Protein Expression in Normal and Cancer Tissues , 2016, Scientific Reports.

[5]  M. Schrappe,et al.  Bortezomib Treatment can Overcome Glucocorticoid Resistance in Childhood B-cell Precursor Acute Lymphoblastic Leukemia Cell Lines , 2015, Klinische Pädiatrie.

[6]  R. Stam,et al.  Glucocorticoid sensitisation in Mixed Lineage Leukaemia-rearranged acute lymphoblastic leukaemia by the pan-BCL-2 family inhibitors gossypol and AT-101. , 2014, European journal of cancer.

[7]  U. Kees,et al.  Bioenergetic modulation overcomes glucocorticoid resistance in T‐lineage acute lymphoblastic leukaemia , 2014, British journal of haematology.

[8]  R. Stam,et al.  Chemical genomic screening identifies LY294002 as a modulator of glucocorticoid resistance in MLL-rearranged infant ALL , 2014, Leukemia.

[9]  M. Minden,et al.  PPARα and fatty acid oxidation mediate glucocorticoid resistance in chronic lymphocytic leukemia. , 2013, Blood.

[10]  Hoong-Chien Lee,et al.  ToP: A Trend-of-Disease-Progression Procedure Works Well for Identifying Cancer Genes from Multi-State Cohort Gene Expression Data for Human Colorectal Cancer , 2013, PloS one.

[11]  A. Fukushima DiffCorr: an R package to analyze and visualize differential correlations in biological networks. , 2013, Gene.

[12]  R. Stam,et al.  Src kinase-induced phosphorylation of annexin A2 mediates glucocorticoid resistance in MLL-rearranged infant acute lymphoblastic leukemia , 2013, Leukemia.

[13]  Peng Yao,et al.  Aminoacyl-tRNA synthetases in medicine and disease , 2013, EMBO molecular medicine.

[14]  Christie S. Chang,et al.  The BioGRID interaction database: 2013 update , 2012, Nucleic Acids Res..

[15]  R. Stam,et al.  Elevated S100A8/S100A9 expression causes glucocorticoid resistance in MLL-rearranged infant acute lymphoblastic leukemia , 2012, Leukemia.

[16]  George I. Lambrou,et al.  Glucocorticoid and proteasome inhibitor impact on the leukemic lymphoblast: Multiple, diverse signals converging on a few key downstream regulators , 2012, Molecular and Cellular Endocrinology.

[17]  Binsheng Gong,et al.  Combined gene expression and protein interaction analysis of dynamic modularity in glioma prognosis , 2012, Journal of Neuro-Oncology.

[18]  Martin H. Schaefer,et al.  HIPPIE: Integrating Protein Interaction Networks with Experiment Based Quality Scores , 2012, PloS one.

[19]  Dukyong Yoon,et al.  Differentially co-expressed interacting protein pairs discriminate samples under distinct stages of HIV type 1 infection , 2011, BMC Systems Biology.

[20]  Rafael C. Jimenez,et al.  The IntAct molecular interaction database in 2012 , 2011, Nucleic Acids Res..

[21]  Livia Perfetto,et al.  MINT, the molecular interaction database: 2012 update , 2011, Nucleic Acids Res..

[22]  Lincoln Stein,et al.  Reactome: a database of reactions, pathways and biological processes , 2010, Nucleic Acids Res..

[23]  Yen-Jen Oyang,et al.  Dynamic functional modules in co-expressed protein interaction networks of dilated cardiomyopathy , 2010, BMC Systems Biology.

[24]  Tun-Wen Pai,et al.  Inhibition of the interactions between eosinophil cationic protein and airway epithelial cells by traditional Chinese herbs , 2010, BMC Systems Biology.

[25]  A. Fuente,et al.  From ‘differential expression’ to ‘differential networking’ – identification of dysfunctional regulatory networks in diseases , 2010 .

[26]  L. Dick,et al.  Building on bortezomib: second-generation proteasome inhibitors as anti-cancer therapy. , 2010, Drug discovery today.

[27]  R. Stam,et al.  Specific promoter methylation identifies different subgroups of MLL-rearranged infant acute lymphoblastic leukemia, influences clinical outcome, and provides therapeutic options. , 2009, Blood.

[28]  Martin J Firth,et al.  Glucocorticoid resistance in T-lineage acute lymphoblastic leukaemia is associated with a proliferative metabolism , 2009, British Journal of Cancer.

[29]  S. Horvath,et al.  WGCNA: an R package for weighted correlation network analysis , 2008, BMC Bioinformatics.

[30]  Sandhya Rani,et al.  Human Protein Reference Database—2009 update , 2008, Nucleic Acids Res..

[31]  Tobias Müller,et al.  Identifying functional modules in protein–protein interaction networks: an integrated exact approach , 2008, ISMB.

[32]  Sunghoon Kim,et al.  Determination of Three-dimensional Structure and Residues of the Novel Tumor Suppressor AIMP3/p18 Required for the Interaction with ATM* , 2008, Journal of Biological Chemistry.

[33]  T. Ideker,et al.  Network-based classification of breast cancer metastasis , 2007, Molecular systems biology.

[34]  R. Pieters,et al.  A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial , 2007, The Lancet.

[35]  Sean R. Davis,et al.  GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor , 2007, Bioinform..

[36]  Serban Nacu,et al.  Gene expression network analysis and applications to immunology , 2007, Bioinform..

[37]  M. García-Carrasco,et al.  The transcription factor nuclear factor-kappa B and cancer. , 2007, Clinical oncology (Royal College of Radiologists (Great Britain)).

[38]  J. Harbott,et al.  Unsupervised proteome analysis of human leukaemia cells identifies the Valosin-containing protein as a putative marker for glucocorticoid resistance , 2006, Leukemia.

[39]  Kiyoko F. Aoki-Kinoshita,et al.  From genomics to chemical genomics: new developments in KEGG , 2005, Nucleic Acids Res..

[40]  S. Armstrong,et al.  Genomewide identification of prednisolone-responsive genes in acute lymphoblastic leukemia cells. , 2005, Blood.

[41]  Martin Kuiper,et al.  BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks , 2005, Bioinform..

[42]  Dmitrij Frishman,et al.  The MIPS mammalian protein?Cprotein interaction database , 2005, Bioinform..

[43]  Daniel Hanisch,et al.  New methods for joint analysis of biological networks and expression data , 2004, German Conference on Bioinformatics.

[44]  Benjamin M. Bolstad,et al.  affy - analysis of Affymetrix GeneChip data at the probe level , 2004, Bioinform..

[45]  Brad T. Sherman,et al.  DAVID: Database for Annotation, Visualization, and Integrated Discovery , 2003, Genome Biology.

[46]  Sunghoon Kim,et al.  Downregulation of FUSE-binding protein and c-myc by tRNA synthetase cofactor p38 is required for lung cell differentiation , 2003, Nature Genetics.

[47]  Benno Schwikowski,et al.  Discovering regulatory and signalling circuits in molecular interaction networks , 2002, ISMB.

[48]  Martin Vingron,et al.  Variance stabilization applied to microarray data calibration and to the quantification of differential expression , 2002, ISMB.

[49]  N. Krett,et al.  Mechanisms of glucocorticoid-mediated apoptosis in hematological malignancies. , 2002, Clinical cancer research : an official journal of the American Association for Cancer Research.

[50]  H. Yoshikawa,et al.  VCP (p97) Regulates NFKB Signaling Pathway, Which Is Important for Metastasis of Osteosarcoma Cell Line , 2002, Japanese journal of cancer research : Gann.

[51]  R. Pieters,et al.  Asparagine synthetase activity in paediatric acute leukaemias: AML‐M5 subtype shows lowest activity , 2000, British journal of haematology.

[52]  W. V. Berghe,et al.  Glucocorticoids repress NF-kappaB-driven genes by disturbing the interaction of p65 with the basal transcription machinery, irrespective of coactivator levels in the cell. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[53]  E. Lander,et al.  Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[54]  B. Barlogie,et al.  Role of NF-kappaB in the rescue of multiple myeloma cells from glucocorticoid-induced apoptosis by bcl-2. , 1999, Blood.

[55]  K. Kliche,et al.  Proteasome inhibitors induce apoptosis in glucocorticoid-resistant chronic lymphocytic leukemic lymphocytes. , 1998, Blood.

[56]  M. D. Boer,et al.  Relation between age, immunophenotype and in vitro drug resistance in 395 children with acute lymphoblastic leukemia–implications for treatment of infants , 1998, Leukemia.

[57]  S. Schuster,et al.  Amino acid control of asparagine synthetase: relation to asparaginase resistance in human leukemia cells. , 1997, American Journal of Physiology.

[58]  M. Greaves Infant leukaemia biology, aetiology and treatment. , 1996, Leukemia.

[59]  Joseph A. DiDonato,et al.  Immunosuppression by Glucocorticoids: Inhibition of NF-κB Activity Through Induction of IκB Synthesis , 1995, Science.

[60]  A. Baldwin,et al.  Role of Transcriptional Activation of IκBα in Mediation of Immunosuppression by Glucocorticoids , 1995, Science.

[61]  R. Pieters,et al.  Mononuclear cells contaminating acute lymphoblastic leukaemic samples tested for cellular drug resistance using the methyl-thiazol-tetrazolium assay. , 1994, British Journal of Cancer.

[62]  E. Thompson,et al.  Suppression of c-myc is a critical step in glucocorticoid-induced human leukemic cell lysis. , 1993, The Journal of biological chemistry.

[63]  T. Sano,et al.  Serum concentration and localization in tumor cells of proteasomes in patients with hematologic malignancy and their pathophysiologic significance. , 1993, The Journal of laboratory and clinical medicine.

[64]  R. Pieters,et al.  In vitro drug sensitivity of cells from children with leukemia using the MTT assay with improved culture conditions , 1990 .

[65]  J. Broome,et al.  EVIDENCE THAT THE L-ASPARAGINASE OF GUINEA PIG SERUM IS RESPONSIBLE FOR ITS ANTILYMPHOMA EFFECTS , 1963, The Journal of experimental medicine.

[66]  E. Derudder,et al.  Control of NF-κB activity by proteolysis. , 2011, Current topics in microbiology and immunology.

[67]  Adam J. Smith,et al.  The Database of Interacting Proteins: 2004 update , 2004, Nucleic Acids Res..

[68]  Ching-Hon Pui,et al.  Acute lymphoblastic leukemia. , 2004, The New England journal of medicine.

[69]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[70]  Brad T. Sherman,et al.  DAVID: Database for Annotation, Visualization, and Integrated Discovery , 2003, Genome Biology.

[71]  G. Tricot New insights into role of microenvironment in multiple myeloma , 2002, International journal of hematology.

[72]  Ioannis Xenarios,et al.  DIP: The Database of Interacting Proteins: 2001 update , 2001, Nucleic Acids Res..

[73]  Gary D Bader,et al.  BIND--The Biomolecular Interaction Network Database. , 2001, Nucleic acids research.

[74]  P. Gaynon,et al.  Glucocorticosteroid therapy in childhood acute lymphoblastic leukemia. , 1999, Advances in experimental medicine and biology.

[75]  J. Boos,et al.  Asparagine Synthetase in Pediatric Acute Leukemias: AML-M5 Subtype Shows Lowest Activity , 1998 .

[76]  R. Pieters,et al.  In vitro drug sensitivity of cells from children with leukemia using the MTT assay with improved culture conditions. , 1990, Blood.