Error estimates in the fast multipole method for scattering problems Part 1: Truncation of the Jacobi-Anger series

We perform a complete study of the truncation error of the Gegenbauer series. This series yields an expansion of the Green kernel of the Helmholtz equation, , which is the core of the Fast Multipole Method for the integral equations. We consider the truncated series where the summation is performed over the indices . We prove that if is large enough, the truncated series gives rise to an error lower than ϵ as soon as L satisfies where W is the Lambert function, depends only on and are pure positive constants. Numerical experiments show that this asymptotic is optimal. Those results are useful to provide sharp estimates of the error in the fast multipole method for scattering computation.

[1]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[2]  Weng Cho Chew,et al.  Numerical accuracy of multipole expansion for 2D MLFMA , 2003 .

[3]  Jiming Song,et al.  Error Analysis for the Numerical Evaluation of the Diagonal Forms of the Scalar Spherical Addition Theorem , 1999 .

[4]  Jussi Rahola,et al.  Diagonal forms of the translation operators in the fast multipole algorithm for scattering problems , 1995 .

[5]  J. Nédélec Acoustic and Electromagnetic Equations : Integral Representations for Harmonic Problems , 2001 .

[6]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[7]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[8]  Lee Lorch Alternative Proof of a Sharpened Form of Bernstein's Inequality for Legendre Polynomials , 1983 .

[9]  Eric Darve,et al.  The Fast Multipole Method , 2000 .

[10]  Eric F Darve Regular ArticleThe Fast Multipole Method: Numerical Implementation , 2000 .

[11]  R. Coifman,et al.  The fast multipole method for the wave equation: a pedestrian prescription , 1993, IEEE Antennas and Propagation Magazine.

[12]  J. Nédélec Acoustic and electromagnetic equations , 2001 .

[13]  T. M. Cherry,et al.  Uniform asymptotic formulae for functions with transition points , 1950 .

[14]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[15]  G. A. Watson A treatise on the theory of Bessel functions , 1944 .

[16]  Michael A. Epton,et al.  Multipole Translation Theory for the Three-Dimensional Laplace and Helmholtz Equations , 1995, SIAM J. Sci. Comput..

[17]  Eric Darve,et al.  Efficient fast multipole method for low-frequency scattering , 2004 .

[18]  Eric F Darve The Fast Multipole Method , 2000 .

[19]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[20]  Alternative proof of a sharpened forms of bernstein's inequality for legendre polynomials: corrigendum , 1993 .

[21]  Gaston H. Gonnet,et al.  On the LambertW function , 1996, Adv. Comput. Math..

[22]  S. Amini,et al.  Analysis of the truncation errors in the fast multipole method for scattering problems , 2000 .

[23]  L. Vega,et al.  Weighted Estimates for the Helmholtz Equation and Some Applications , 1997 .

[24]  O. Cessenat,et al.  Application of an Ultra Weak Variational Formulation of Elliptic PDEs to the Two-Dimensional Helmholtz Problem , 1998 .

[25]  Eric Darve,et al.  The Fast Multipole Method I: Error Analysis and Asymptotic Complexity , 2000, SIAM J. Numer. Anal..

[26]  B. Dembart,et al.  The accuracy of fast multipole methods for Maxwell's equations , 1998 .

[27]  Jian-Ming Jin,et al.  Fast and Efficient Algorithms in Computational Electromagnetics , 2001 .