FFLD-Based Modeling of Fractional-Order State Space LTI MIMO Systems

This paper introduces a multivariable version of the Grunwald-Letnikov fractional-order difference (FD) and approximates it with a powerful combination of finite fractional difference (FFD) and finite Laguerre-based difference (FLD) to yield finite fractional/Laguerre-based difference (FFLD). The multivariable FFLD is effectively used to model fractional-order state-space LTI MIMO systems.

[1]  Guido Maione,et al.  On the Laguerre Rational Approximation to Fractional Discrete Derivative and Integral Operators , 2013, IEEE Transactions on Automatic Control.

[2]  I. Podlubny Fractional differential equations , 1998 .

[3]  Krzysztof J. Latawiec,et al.  Normalized finite fractional differences: Computational and accuracy breakthroughs , 2012, Int. J. Appl. Math. Comput. Sci..

[4]  M. Łukaniszyn,et al.  A Comparative Analysis of Laguerre-Based Approximators to the Grünwald-Letnikov Fractional-Order Difference , 2015 .

[5]  Harish Sankaranarayanan,et al.  Higher order Grünwald approximations of fractional derivatives and fractional powers of operators , 2014 .

[6]  K. Latawiec,et al.  Fractional-Order Discrete-Time Laguerre Filters: A New Tool for Modeling and Stability Analysis of Fractional-Order LTI SISO Systems , 2016 .

[7]  Z. Ditzian,et al.  Fractional Derivatives and Best Approximation , 1998 .

[8]  YangQuan Chen,et al.  Fractional-order Systems and Controls , 2010 .

[9]  Karabi Biswas,et al.  Rational approximation of fractional operator — A comparative study , 2010, 2010 International Conference on Power, Control and Embedded Systems.

[10]  Igor Podlubny,et al.  A New Discretization Method for Fractional Order Differentiators via Continued Fraction Expansion , 2003 .

[11]  YangQuan Chen,et al.  Fractional-order systems and control : fundamentals and applications , 2010 .

[12]  Krzysztof J. Latawiec,et al.  Stability analysis for discrete-time fractional-order LTI state-space systems. Part II: New stability criterion for FD-based systems , 2013 .

[13]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[14]  Xiaozhong Liao,et al.  Rational approximation for fractional-order system by particle swarm optimization , 2012 .

[15]  Krzysztof J. Latawiec,et al.  Stability analysis for discrete-time fractional-order LTI state-space systems. Part I: New necessary and sufficient conditions for the asymptotic stability , 2013 .

[16]  Krzysztof J. Latawiec,et al.  Time-domain approximations to the Grünwald-Letnikov difference with application to modeling of fractional-order state space systems , 2015, 2015 20th International Conference on Methods and Models in Automation and Robotics (MMAR).

[17]  Xiaozhong Liao,et al.  Improved Oustaloup approximation of fractional-order operators using adaptive chaotic particle swarm optimization , 2012 .

[18]  Rafal Stanislawski,et al.  Modeling of open-loop stable linear systems using a combination of a finite fractional derivative and orthonormal basis functions , 2010, 2010 15th International Conference on Methods and Models in Automation and Robotics.

[19]  Rafał Stanisławski New Laguerre Filter Approximators to the Grünwald-Letnikov Fractional Difference , 2012 .

[20]  Chien-Cheng Tseng,et al.  Design of variable and adaptive fractional order FIR differentiators , 2006, Signal Process..