Design and Evaluation of a Flight Control Law Using the Hierarchy-structured Dynamic Inversion Approach

This paper focuses on design and evaluation of a flight control law based on the hierarchy-structured dynamic inversion approach, where a general fixed-wing aircraft system is decomposed into four small subsystems according to the time scales inherent in the dynamics and dynamic inversion is applied to each subsystem. The hierarchy-structured dynamic inversion approach considerably simplifies the flight control design and also features universal design of flight control systems through real-time utilization of the vehicle’s 6DOF simulation model on board. In this paper, the outline of the proposed approach is presented in the first place followed by a numerical simulation using the highly reliable ALFLEX flight simulation model to ensure the validity of the approach. A root sum square (RSS) analysis is finally conducted to guarantee robustness against wind conditions and some influential parameters.