Photoconductive and Non-Equilibrium Devices in HgCdTe and Related Alloys

The fundamental properties of HgCdTe (MCT) of high optical absorption coefficient, high electron mobility and low carrier thermal generation rate, together with the alloy’s capability for lattice-matched heterojunctions and band gap engineering, make it the almost ideal material for infrared detectors over a wide wavelength range. Despite its difficult physical properties, which have made the development of crystal growth and device fabrication techniques challenging, it is now the most widely used infrared detector material, in many different types of devices.

[1]  T. Shepherd,et al.  Transport in photo-conductors—II. Sampling from a finite device , 1982 .

[2]  V. Pipa,et al.  Galvanomagnetic infrared-luminescence of varying-gap CdxHg1−xTe/CdTe structures , 1992 .

[3]  V. Malyutenko,et al.  Exclusion effects revisited: nontraditional use of narrow-gap semiconductors , 1993 .

[4]  D. K. Arch,et al.  HgCdTe heterojunction contact photoconductor , 1984 .

[5]  T. S. Moss,et al.  Handbook on semiconductors , 1980 .

[6]  T. Ashley,et al.  Accumulation effects at contacts to n-type cadmium-mercury-telluride photoconductors , 1982 .

[7]  M. Chiba,et al.  Characteristics of Luminescence from InSb Magneto-Infrared-Emitting Diode , 1984 .

[8]  C T. Elliott Sprite Detectors And Staring Arrays In Hg1-xCdxTe , 1989, Other Conferences.

[9]  Neil T. Gordon,et al.  Recent results on metalorganic vapor phase epitaxially grown HgCdTe heterostructure devices , 1996 .

[10]  P. E. Petersen,et al.  A comparison of the dominant Auger transitions in p-type (Hg,Cd)Te☆ , 1980 .

[11]  James H. Rutter,et al.  Advances in 15-um HgCdTe photovoltaic and photoconductive detector technology for remote sensing , 1996, Optics & Photonics.

[12]  C. T. Elliott New detector for thermal imaging systems , 1981 .

[13]  J. Piotrowski,et al.  ZnHgTe as a material for ambient temperature 10.6 μm photodetectors , 1989 .

[14]  Jozef Piotrowski,et al.  Near room-temperature IR photo-detectors , 1991 .

[15]  T. N. Casselman,et al.  Calculation of the Auger lifetime in p‐type Hg1‐xCdxTe , 1981 .

[16]  T. Shepherd,et al.  Transport in photo-conductors. I - Focal plane processing. II - Sampling from a finite device , 1982 .

[17]  M B. Reine Status Of HgCdTe Detector Technology , 1983, Optics & Photonics.

[18]  T. Ashley,et al.  Optimization of spatial resolution in sprite detectors , 1984 .

[19]  Paul Berdahl,et al.  Radiant refrigeration by semiconductor diodes , 1985 .

[20]  J. C. Brice,et al.  Properties of mercury cadmium telluride , 1987 .

[21]  A. Kolodny,et al.  Two-dimensional effects in intrinsic photoconductive infrared detectors , 1982 .

[22]  M. Kimmitt,et al.  Far-infrared detection with Hg1−xCdxTe , 1985 .

[23]  L. Faraone,et al.  Two-dimensional infrared focal plane arrays based on HgCdTe photoconductive detectors , 1996 .

[24]  M. A. Kinch,et al.  0.1 eV HgCdTe photoconductive detector performance , 1977 .

[25]  R. Williams Sensitivity limits of 0.1 eV intrinsic photoconductors , 1968 .

[26]  V. Gopal,et al.  Dependence of responsivity on the structure of a blocking contact in an intrinsic HgCdTe photoconductor , 1991 .

[27]  Masahiro Tanaka,et al.  Epitaxial growth of HgCdTe on sapphire for photoconductive detectors , 1992 .

[28]  C. T. Elliott,et al.  Current gain in photodiode structures , 1991 .

[29]  A. B. Dean,et al.  The serial addition of sprite infrared detectors , 1988 .

[30]  J. Piotrowski,et al.  Uncooled photoconductive (Cd,Hg)Te detectors for the 8–14 μm region , 1979 .

[31]  A. Rogalski,et al.  Performance of mercury cadmium telluride photoconductive detectors , 1991 .

[32]  R. Pratt,et al.  Minority‐carrier lifetime in doped and undoped n‐type CdxHg1−xTe , 1986 .

[33]  Takeshi Morimoto,et al.  Negative luminescence of semiconductors , 1989 .

[34]  C. T. Elliott,et al.  Non-equilibrium modes of operation of narrow-gap semiconductor devices , 1990 .

[35]  T. Ashley,et al.  Non-equilibrium modes of operation for infrared detectors , 1986 .

[36]  T. Skauli,et al.  Effect of device processing on 1/f noise in uncooled, auger-suppressed CdHgTe diodes , 1998 .

[37]  I. Baker,et al.  Recombination in cadmium mercury telluride photodetectors , 1978 .

[38]  D. Smith Theory of generation‐recombination noise and responsitivity in overlap structure photoconductors , 1983 .

[39]  T Ashley,et al.  Operation and properties of narrow-gap semiconductor devices near room temperature using non-equilibrium techniques , 1991 .

[40]  Suha Oguz,et al.  Growth of detector quality MCT in a vertical MOCVD reactor , 1990, Defense, Security, and Sensing.

[41]  P. W. Norton,et al.  The impact of characterization techniques on HgCdTe infrared detector technology , 1993 .

[42]  J. Piotrowski,et al.  Mercury zinc telluride longwavelength high temperature photoconductors , 1990 .

[43]  P. Berdahl,et al.  Galvanomagnetic luminescence of indium antimonide , 1985 .

[44]  N Oda,et al.  Comprehensive Model For HgCdTe Photoconductor Sensitivity , 1988, Other Conferences.

[45]  C. L. Jones,et al.  Growth of fully doped Hg1−xCdxTe heterostructures using a novel iodine doping source to achieve improved device performance at elevated temperatures , 1996 .

[46]  Piotr Becla,et al.  Advanced infrared photonic devices based on HgMnTe , 1993, Optics & Photonics.

[47]  W. H. Konkel,et al.  Epitaxial growth, characterization, and phase diagram of HgZnTe , 1987 .

[48]  M. A. Kinch,et al.  Geometrical enhancement of HgCdTe photoconductive detectors , 1977 .

[49]  W. Spicer,et al.  Effects influencing the structural integrity of semiconductors and their alloys , 1985 .

[50]  E. Putley Impurity photoconductivity in n-type InSb , 1960 .

[51]  A. White Negative resistance with Auger suppression in near-intrinsic, low-bandgap photo-diode structures , 1987 .

[52]  D. E. Charlton,et al.  The practical realisation and performance of sprite detectors , 1982 .

[53]  Antoni Rogalski,et al.  Infrared Photon Detectors , 1995 .

[54]  P. Petersen Chapter 4 Auger Recombination in Mercury Cadmium Telluride , 1981 .

[55]  A. M. White,et al.  The characteristics of minority-carrier exclusion in narrow direct gap semiconductors , 1985 .

[56]  Christopher McConville,et al.  Ambient temperature diodes and field‐effect transistors in InSb/In1−xAlxSb , 1991 .

[57]  Dennis K. Killinger,et al.  Optical and laser remote sensing , 1983 .

[58]  C. Hilsum Chapter 1 Some Key Features of III–V Compounds , 1966 .

[59]  A. Rogalski,et al.  Performance of p+-n HgCdTe photodiodes , 1993 .

[60]  B. Nener,et al.  Heterojunction blocking contacts in MOCVD grown Hg/sub 1-x/Cd/sub x/Te long wavelength infrared photoconductors , 1997 .

[61]  T. N. Duy,et al.  Highlights of recent results on HgCdTe thin film photoconductors , 1991 .

[62]  T. Ashley,et al.  Nonequilibrium devices for infra-red detection , 1985 .

[63]  T. Morimoto,et al.  Stimulated infrared emission from hot electrons of InSb excited by J × H force at the quantum limit , 1992 .

[64]  M. Chiba,et al.  Stimulated Emission due to Electromagnetic Breakthrough in InSb at Room Temperature , 1989 .

[65]  D. Day,et al.  An integrating detector for serial scan thermal imaging , 1982 .

[66]  M. Kinch,et al.  0.1 ev HgCdTe photodetectors , 1975 .

[67]  Antoni Rogalski,et al.  Intrinsic infrared detectors , 1988 .

[68]  I. Gale,et al.  Doping studies in MOVPE-grown CdxHg1-xTe , 1993 .

[69]  A. M. White,et al.  Auger suppression and negative resistance in low gap PIN diode structures , 1986 .