Classes of Matroids Closed Under Minors and Principal Extensions

This work studies the classes of matroids that are closed under minors, addition of coloops and principal extensions. To any matroid M in such a class a matroid M° is constructed such that it contains M as a minor, has all proper minors in the class and violates Zhang- Yeung inequality. When the class enjoys the inequality the matroid M° becomes an excluded minor. An analogous assertion was known before for the linear matroids over any infinite field in connection with Ingleton inequality. The result is applied to the classes of multilinear, algebraic and almost entropic matroids. In particular, the class of almost entropic matroids has infinitely many excluded minors.

[1]  Frantisek Matús,et al.  Matroid representations by partitions , 1999, Discret. Math..

[2]  Eric Katz Matroid Theory for Algebraic Geometers , 2014, 1409.3503.

[3]  A. Ingleton,et al.  Conditions for representability and transversality of matroids , 1971 .

[4]  Alexei E. Ashikhmin,et al.  Almost Affine Codes , 1998, Des. Codes Cryptogr..

[5]  Zhen Zhang,et al.  A non-Shannon-type conditional inequality of information quantities , 1997, IEEE Trans. Inf. Theory.

[6]  Dowling Geometries Representable over Rings , 2015 .

[7]  Jim Geelen,et al.  Some open problems on excluding a uniform matroid , 2008, Adv. Appl. Math..

[8]  Gian-Carlo ROTA COMBINATORIAL THEORY , OLD AND NEW by , 2022 .

[9]  F. Mat Two Constructions on Limits of Entropy Functions , 2007, IEEE Trans. Inf. Theory.

[10]  László Csirmaz,et al.  Entropy Region and Convolution , 2016, IEEE Transactions on Information Theory.

[11]  James G. Oxley,et al.  Matroid theory , 1992 .

[12]  Paul D. Seymour On secret-sharing matroids , 1992, J. Comb. Theory, Ser. B.

[13]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[14]  T. Lazarson,et al.  The Representation Problem for Independence Functions , 1958 .

[15]  Amos Beimel,et al.  Universally ideal secret-sharing schemes , 1994, IEEE Trans. Inf. Theory.

[16]  Bernt Lindström On algebraic matroids , 1993, Discret. Math..

[17]  Satoru Fujishige,et al.  Polymatroidal Dependence Structure of a Set of Random Variables , 1978, Inf. Control..

[18]  Bernt Lindström A generalization of the ingleton—Main lemma and a class of non-algebraic matroids , 1988, Comb..

[19]  Peter Frankl,et al.  Matroids, Algebraic and Non Algebraic , 1988 .

[20]  Frantisek Matús,et al.  Adhesivity of polymatroids , 2007, Discret. Math..

[21]  Ernest F. Brickell,et al.  On the classification of ideal secret sharing schemes , 1989, Journal of Cryptology.

[22]  F. Matús PROBABILISTIC CONDITIONAL INDEPENDENCE STRUCTURES AND MATROID THEORY: BACKGROUND1 , 1993 .

[23]  B. Lindström A class of non-algebraic matroids of rank three , 1987 .

[24]  Raymond W. Yeung,et al.  A First Course in Information Theory , 2002 .

[25]  H. Narayanan Submodular functions and electrical networks , 1997 .

[26]  Amos Beimel,et al.  Secret-Sharing Schemes: A Survey , 2011, IWCC.

[27]  Stefan H. M. van Zwam,et al.  Skew partial fields, multilinear representations of matroids, and a matrix tree theorem , 2013, Adv. Appl. Math..

[28]  Jaume Martí Farré,et al.  On secret sharing schemes, matroids and polymatroids , 2010 .

[29]  Gary Gordon,et al.  Algebraic characteristic sets of matroids , 1987, J. Comb. Theory, Ser. B.

[30]  Aner Ben-Efraim,et al.  Secret-sharing matroids need not be algebraic , 2014, Discret. Math..

[31]  Rohan Kapadia,et al.  Representation of matroids with a modular plane , 2013 .

[32]  Zhen Zhang,et al.  On Characterization of Entropy Function via Information Inequalities , 1998, IEEE Trans. Inf. Theory.

[33]  László Lovász,et al.  Submodular functions and convexity , 1982, ISMP.

[34]  Tom Brylawski,et al.  Matroids and combinatorial geometries , 1980 .