Classes of Matroids Closed Under Minors and Principal Extensions
暂无分享,去创建一个
[1] Frantisek Matús,et al. Matroid representations by partitions , 1999, Discret. Math..
[2] Eric Katz. Matroid Theory for Algebraic Geometers , 2014, 1409.3503.
[3] A. Ingleton,et al. Conditions for representability and transversality of matroids , 1971 .
[4] Alexei E. Ashikhmin,et al. Almost Affine Codes , 1998, Des. Codes Cryptogr..
[5] Zhen Zhang,et al. A non-Shannon-type conditional inequality of information quantities , 1997, IEEE Trans. Inf. Theory.
[6] Dowling Geometries Representable over Rings , 2015 .
[7] Jim Geelen,et al. Some open problems on excluding a uniform matroid , 2008, Adv. Appl. Math..
[8] Gian-Carlo ROTA. COMBINATORIAL THEORY , OLD AND NEW by , 2022 .
[9] F. Mat. Two Constructions on Limits of Entropy Functions , 2007, IEEE Trans. Inf. Theory.
[10] László Csirmaz,et al. Entropy Region and Convolution , 2016, IEEE Transactions on Information Theory.
[11] James G. Oxley,et al. Matroid theory , 1992 .
[12] Paul D. Seymour. On secret-sharing matroids , 1992, J. Comb. Theory, Ser. B.
[13] Tsuyoshi Murata,et al. {m , 1934, ACML.
[14] T. Lazarson,et al. The Representation Problem for Independence Functions , 1958 .
[15] Amos Beimel,et al. Universally ideal secret-sharing schemes , 1994, IEEE Trans. Inf. Theory.
[16] Bernt Lindström. On algebraic matroids , 1993, Discret. Math..
[17] Satoru Fujishige,et al. Polymatroidal Dependence Structure of a Set of Random Variables , 1978, Inf. Control..
[18] Bernt Lindström. A generalization of the ingleton—Main lemma and a class of non-algebraic matroids , 1988, Comb..
[19] Peter Frankl,et al. Matroids, Algebraic and Non Algebraic , 1988 .
[20] Frantisek Matús,et al. Adhesivity of polymatroids , 2007, Discret. Math..
[21] Ernest F. Brickell,et al. On the classification of ideal secret sharing schemes , 1989, Journal of Cryptology.
[22] F. Matús. PROBABILISTIC CONDITIONAL INDEPENDENCE STRUCTURES AND MATROID THEORY: BACKGROUND1 , 1993 .
[23] B. Lindström. A class of non-algebraic matroids of rank three , 1987 .
[24] Raymond W. Yeung,et al. A First Course in Information Theory , 2002 .
[25] H. Narayanan. Submodular functions and electrical networks , 1997 .
[26] Amos Beimel,et al. Secret-Sharing Schemes: A Survey , 2011, IWCC.
[27] Stefan H. M. van Zwam,et al. Skew partial fields, multilinear representations of matroids, and a matrix tree theorem , 2013, Adv. Appl. Math..
[28] Jaume Martí Farré,et al. On secret sharing schemes, matroids and polymatroids , 2010 .
[29] Gary Gordon,et al. Algebraic characteristic sets of matroids , 1987, J. Comb. Theory, Ser. B.
[30] Aner Ben-Efraim,et al. Secret-sharing matroids need not be algebraic , 2014, Discret. Math..
[31] Rohan Kapadia,et al. Representation of matroids with a modular plane , 2013 .
[32] Zhen Zhang,et al. On Characterization of Entropy Function via Information Inequalities , 1998, IEEE Trans. Inf. Theory.
[33] László Lovász,et al. Submodular functions and convexity , 1982, ISMP.
[34] Tom Brylawski,et al. Matroids and combinatorial geometries , 1980 .