Block assembly for global registration of building scans

We propose a framework for global registration of building scans. The first contribution of our work is to detect and use portals (e.g., doors and windows) to improve the local registration between two scans. Our second contribution is an optimization based on a linear integer programming formulation. We abstract each scan as a block and model the blocks registration as an optimization problem that aims at maximizing the overall matching score of the entire scene. We propose an efficient solution to this optimization problem by iteratively detecting and adding local constraints. We demonstrate the effectiveness of the proposed method on buildings of various styles and that our approach is superior to the current state of the art.

[1]  Eric Schenk,et al.  Crowdsourcing: What can be Outsourced to the Crowd, and Why ? , 2009 .

[2]  Daniel Cohen-Or,et al.  Quality-driven poisson-guided autoscanning , 2014, ACM Trans. Graph..

[3]  Wei Sun,et al.  Autoscanning for coupled scene reconstruction and proactive object analysis , 2015, ACM Trans. Graph..

[4]  Vladlen Koltun,et al.  Robust reconstruction of indoor scenes , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  John J. Leonard,et al.  Kintinuous: Spatially Extended KinectFusion , 2012, AAAI 2012.

[6]  Jiawen Chen,et al.  Scalable real-time volumetric surface reconstruction , 2013, ACM Trans. Graph..

[7]  Karthik Ramani,et al.  Robust principal axes determination for point-based shapes using least median of squares , 2009, Comput. Aided Des..

[8]  G. Roth,et al.  View planning for automated three-dimensional object reconstruction and inspection , 2003, CSUR.

[9]  Marsette Vona,et al.  Moving Volume KinectFusion , 2012, BMVC.

[10]  Olaf Kähler,et al.  Very High Frame Rate Volumetric Integration of Depth Images on Mobile Devices , 2015, IEEE Transactions on Visualization and Computer Graphics.

[11]  Andrew W. Fitzgibbon,et al.  KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera , 2011, UIST.

[12]  Gary K. L. Tam,et al.  Registration of 3D Point Clouds and Meshes: A Survey from Rigid to Nonrigid , 2013, IEEE Transactions on Visualization and Computer Graphics.

[13]  Daniel Cohen-Or,et al.  Upright orientation of man-made objects , 2008, ACM Trans. Graph..

[14]  J. D. Wegner,et al.  Globally consistent registration of terrestrial laser scans via graph optimization , 2015 .

[15]  Daniel Cohen-Or,et al.  4-points congruent sets for robust pairwise surface registration , 2008, ACM Trans. Graph..

[16]  Stewart Coffin,et al.  The Six-Piece Burr , 2016 .

[17]  Petar M. Djuric,et al.  Indoor Tracking: Theory, Methods, and Technologies , 2015, IEEE Transactions on Vehicular Technology.

[18]  D. Cohen-Or,et al.  Upright orientation of man-made objects , 2008, SIGGRAPH 2008.

[19]  Matthias Nießner,et al.  Real-time 3D reconstruction at scale using voxel hashing , 2013, ACM Trans. Graph..

[20]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[21]  Andrew W. Fitzgibbon,et al.  KinectFusion: Real-time dense surface mapping and tracking , 2011, 2011 10th IEEE International Symposium on Mixed and Augmented Reality.

[22]  Radu Bogdan Rusu,et al.  3D is here: Point Cloud Library (PCL) , 2011, 2011 IEEE International Conference on Robotics and Automation.

[23]  Sang Wook Lee,et al.  Multiview registration of 3D scenes by minimizing error between coordinate frames , 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[25]  Hao Li,et al.  Global Correspondence Optimization for Non‐Rigid Registration of Depth Scans , 2008, Comput. Graph. Forum.

[26]  Adrian Hilton,et al.  Global temporal registration of multiple non-rigid surface sequences , 2011, CVPR 2011.

[27]  Bernard Ghanem,et al.  Robust Manhattan Frame estimation from a single RGB-D image , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  Peng Song,et al.  Computational interlocking furniture assembly , 2015, ACM Trans. Graph..

[29]  Hui Huang,et al.  Proactive 3D scanning of inaccessible parts , 2014, ACM Trans. Graph..

[30]  Reinhard Klein,et al.  Efficient RANSAC for Point‐Cloud Shape Detection , 2007, Comput. Graph. Forum.

[31]  Martial Hebert,et al.  Fully automatic registration of multiple 3D data sets , 2003, Image Vis. Comput..

[32]  H. Pottmann,et al.  Reassembling fractured objects by geometric matching , 2006, SIGGRAPH 2006.

[33]  M. Hebert,et al.  Automatic three-dimensional modeling from reality , 2002 .

[34]  Daniel Cohen-Or,et al.  Field-guided registration for feature-conforming shape composition , 2012, ACM Trans. Graph..

[35]  Daniel Rueckert,et al.  Nonrigid registration using free-form deformations: application to breast MR images , 1999, IEEE Transactions on Medical Imaging.

[36]  D. Cohen-Or,et al.  SmartBoxes for interactive urban reconstruction , 2010, ACM Trans. Graph..

[37]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Stewart Coffin The Six-Piece Burr , 2016 .

[39]  Szymon Rusinkiewicz,et al.  Global non-rigid alignment of 3-D scans , 2007, SIGGRAPH 2007.

[40]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[41]  Leonidas J. Guibas,et al.  Robust global registration , 2005, SGP '05.

[42]  Vladlen Koltun,et al.  Dense scene reconstruction with points of interest , 2013, ACM Trans. Graph..

[43]  Subhash Suri,et al.  On geometric matching , 1989, SCG '89.

[44]  Markus H. Gross,et al.  Multi‐scale Feature Extraction on Point‐Sampled Surfaces , 2003, Comput. Graph. Forum.

[45]  Baba C. Vemuri,et al.  Robust Point Set Registration Using Gaussian Mixture Models , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.