Conservation of intracellular Wnt signaling components in dorsal-ventral axis formation in zebrafish

[1]  Y. Sasai,et al.  A novel homeobox gene, dharma, can induce the organizer in a non-cell-autonomous manner. , 1998, Genes & development.

[2]  R. Moon,et al.  From cortical rotation to organizer gene expression: toward a molecular explanation of axis specification in Xenopus , 1998, BioEssays : news and reviews in molecular, cellular and developmental biology.

[3]  D. M. Ferkey,et al.  GBP, an Inhibitor of GSK-3, Is Implicated in Xenopus Development and Oncogenesis , 1998, Cell.

[4]  S. Sokol,et al.  Axis determination in Xenopus involves biochemical interactions of axin, glycogen synthase kinase 3 and β-catenin , 1998, Current Biology.

[5]  Paul Polakis,et al.  Downregulation of β-catenin by human Axin and its association with the APC tumor suppressor, β-catenin and GSK3β , 1998, Current Biology.

[6]  Hideki Yamamoto,et al.  Axin, a Negative Regulator of the Wnt Signaling Pathway, Directly Interacts with Adenomatous Polyposis Coli and Regulates the Stabilization of β-Catenin* , 1998, The Journal of Biological Chemistry.

[7]  Akira Kikuchi,et al.  Axil, a Member of the Axin Family, Interacts with Both Glycogen Synthase Kinase 3β and β-Catenin and Inhibits Axis Formation ofXenopus Embryos , 1998, Molecular and Cellular Biology.

[8]  W. Birchmeier,et al.  Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. , 1998, Science.

[9]  L. Williams,et al.  Bridging of β-catenin and glycogen synthase kinase-3β by Axin and inhibition of β-catenin-mediated transcription , 1998 .

[10]  Akira Kikuchi,et al.  Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK‐3β and β‐catenin and promotes GSK‐3β‐dependent phosphorylation of β‐catenin , 1998 .

[11]  R. Grosschedl,et al.  LEF-1/TCF proteins mediate wnt-inducible transcription from the Xenopus nodal-related 3 promoter. , 1997, Developmental biology.

[12]  Ken W. Y. Cho,et al.  The Xenopus homeobox gene twin mediates Wnt induction of goosecoid in establishment of Spemann's organizer. , 1997, Development.

[13]  D. Kessler,et al.  Siamois is required for formation of Spemann's organizer. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[14]  J. Heasman Patterning the Xenopus blastula. , 1997, Development.

[15]  R. Moon,et al.  A beta-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. , 1997, Genes & development.

[16]  Wei Hsu,et al.  The Mouse Fused Locus Encodes Axin, an Inhibitor of the Wnt Signaling Pathway That Regulates Embryonic Axis Formation , 1997, Cell.

[17]  Jörg Stappert,et al.  β‐catenin is a target for the ubiquitin–proteasome pathway , 1997 .

[18]  S. Sokol,et al.  A role for Siamois in Spemann organizer formation. , 1997, Development.

[19]  P. S. Klein,et al.  Activation of the Wnt signaling pathway: a molecular mechanism for lithium action. , 1997, Developmental biology.

[20]  D. Kimelman,et al.  A role for notochord in axial vascular development revealed by analysis of phenotype and the expression of VEGR-2 in zebrafish flh and ntl mutant embryos , 1997, Mechanisms of Development.

[21]  C. Larabell,et al.  Microtubule-mediated transport of organelles and localization of beta-catenin to the future dorsal side of Xenopus eggs. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[22]  A. Berns,et al.  Activation of a novel proto‐oncogene, Frat1, contributes to progression of mouse T‐cell lymphomas , 1997, The EMBO journal.

[23]  D A Kane,et al.  Genes establishing dorsoventral pattern formation in the zebrafish embryo: the ventral specifying genes. , 1996, Development.

[24]  A. Schier,et al.  Mutations affecting cell fates and cellular rearrangements during gastrulation in zebrafish. , 1996, Development.

[25]  James R. Woodgett,et al.  Lithium inhibits glycogen synthase kinase-3 activity and mimics Wingless signalling in intact cells , 1996, Current Biology.

[26]  J. D. Brown,et al.  Expression of a dominant-negative Wnt blocks induction of MyoD in Xenopus embryos. , 1996, Genes & development.

[27]  B. Herrmann,et al.  Nuclear localization of β-catenin by interaction with transcription factor LEF-1 , 1996, Mechanisms of Development.

[28]  Michael Kühl,et al.  Functional interaction of β-catenin with the transcription factor LEF-1 , 1996, Nature.

[29]  Hans Clevers,et al.  XTcf-3 Transcription Factor Mediates β-Catenin-Induced Axis Formation in Xenopus Embryos , 1996, Cell.

[30]  D. Melton,et al.  A molecular mechanism for the effect of lithium on development. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[31]  H. Steinbeisser,et al.  β-catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos , 1996, Mechanisms of Development.

[32]  W. Busa,et al.  Modulation of Xenopus embryo mesoderm-specific gene expression and dorsoanterior patterning by receptors that activate the phosphatidylinositol cycle signal transduction pathway. , 1996, Development.

[33]  R. Moon,et al.  The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. , 1996, Genes & development.

[34]  R. Moon,et al.  Induction of a secondary embryonic axis in zebrafish occurs following the overexpression of β-catenin , 1995, Mechanisms of Development.

[35]  I. Dominguez,et al.  Role of glycogen synthase kinase 3 beta as a negative regulator of dorsoventral axis formation in Xenopus embryos. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[36]  R. Moon,et al.  Wnt4 affects morphogenesis when misexpressed in the zebrafish embryo , 1995, Mechanisms of Development.

[37]  Harold E. Varmus,et al.  Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos , 1995, Nature.

[38]  P. Lemaire,et al.  Expression cloning of Siamois, a xenopus homeobox gene expressed in dorsal-vegetal cells of blastulae and able to induce a complete secondary axis , 1995, Cell.

[39]  S. Pierce,et al.  Regulation of Spemann organizer formation by the intracellular kinase Xgsk-3. , 1995, Development.

[40]  C. Nüsslein-Volhard,et al.  no tail (ntl) is the zebrafish homologue of the mouse T (Brachyury) gene. , 1994, Development.

[41]  R. Ho,et al.  Induction of muscle pioneers and floor plate is distinguished by the zebrafish no tail mutation , 1993, Cell.

[42]  D. Grunwald,et al.  Lithium perturbation and goosecoid expression identify a dorsal specification pathway in the pregastrula zebrafish. , 1993, Development.

[43]  W. Busa,et al.  Lithium-induced teratogenesis in frog embryos prevented by a polyphosphoinositide cycle intermediate or a diacylglycerol analog. , 1989, Developmental biology.

[44]  J. Gerhart,et al.  Cortical rotation of the Xenopus egg: consequences for the anteroposterior pattern of embryonic dorsal development. , 1989, Development.

[45]  B. Rowning,et al.  A transient array of parallel microtubules in frog eggs: potential tracks for a cytoplasmic rotation that specifies the dorso-ventral axis. , 1988, Developmental biology.

[46]  Uwe Strähle,et al.  Dynamic microtubules and specification of the zebrafish embryonic axis , 1997, Current Biology.