Composite Flow Maps

Flow maps are widely used to provide an overview of geospatial transportation data. Existing solutions lack the support for the interactive exploration of multiple flow components at once. Flow components are given by different materials being transported, different flow directions, or by the need for comparing alternative scenarios. In this paper, we combine flows as individual ribbons in one composite flow map. The presented approach can handle an arbitrary number of sources and sinks. To avoid visual clutter, we simplify our flow maps based on a force‐driven algorithm, accounting for restrictions with respect to application semantics. The goal is to preserve important characteristics of the geospatial context. This feature also enables us to highlight relevant spatial information on top of the flow map such as traffic conditions or accessibility. The flow map is computed on the basis of flows between zones. We describe a method for auto‐deriving zones from geospatial data according to application requirements. We demonstrate the method in real‐world applications, including transportation logistics, evacuation procedures, and water simulation. Our results are evaluated with experts from corresponding fields.

[1]  Bettina Speckmann,et al.  Angle-Restricted Steiner Arborescences for Flow Map Layout , 2011, ISAAC.

[2]  Danny Holten,et al.  Hierarchical Edge Bundles: Visualization of Adjacency Relations in Hierarchical Data , 2006, IEEE Transactions on Visualization and Computer Graphics.

[3]  Robert L. Harris,et al.  Information Graphics: A Comprehensive Illustrated Reference , 1996 .

[4]  Jarke J. van Wijk,et al.  Force‐Directed Edge Bundling for Graph Visualization , 2009, Comput. Graph. Forum.

[5]  Bettina Speckmann,et al.  Flow Map Layout via Spiral Trees , 2011, IEEE Transactions on Visualization and Computer Graphics.

[6]  Natalia Adrienko,et al.  Spatial Generalization and Aggregation of Massive Movement Data , 2011 .

[7]  Christophe Hurter,et al.  Smooth bundling of large streaming and sequence graphs , 2013, 2013 IEEE Pacific Visualization Symposium (PacificVis).

[8]  Bettina Speckmann,et al.  Angle-Restricted Steiner Arborescences for Flow Map Layout , 2011, Algorithmica.

[9]  Romain Bourqui,et al.  Winding Roads: Routing edges into bundles , 2010, Comput. Graph. Forum.

[10]  Günter Blöschl,et al.  A two‐dimensional numerical scheme of dry/wet fronts for the Saint‐Venant system of shallow water equations , 2015 .

[11]  Bruno Simões,et al.  Supervised Force Directed Algorithm for the Generation of Flow Maps , 2014 .

[12]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[13]  Bernard W. Silverman,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[14]  Nancy Argüelles,et al.  Author ' s , 2008 .

[15]  Edward R. Tufte,et al.  The Visual Display of Quantitative Information , 1986 .

[16]  Gennady L. Andrienko,et al.  Composite Density Maps for Multivariate Trajectories , 2011, IEEE Transactions on Visualization and Computer Graphics.

[17]  Michael Burch,et al.  Visual Analytics Methodology for Eye Movement Studies , 2012, IEEE Transactions on Visualization and Computer Graphics.

[18]  P. Hanrahan,et al.  Flow map layout , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[19]  Waldo R. Tobler,et al.  Experiments In Migration Mapping By Computer , 1987 .

[20]  Diansheng Guo,et al.  Flow Mapping and Multivariate Visualization of Large Spatial Interaction Data , 2009, IEEE Transactions on Visualization and Computer Graphics.

[21]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[22]  Hong Zhou,et al.  Geometry-Based Edge Clustering for Graph Visualization , 2008, IEEE Transactions on Visualization and Computer Graphics.

[23]  Edward Rolf Tufte,et al.  The visual display of quantitative information , 1985 .

[24]  Daniel A. Keim,et al.  Visual Analytics of Movement , 2013, Springer Berlin Heidelberg.

[25]  Zsolt Horváth,et al.  Many Plans: Multidimensional Ensembles for Visual Decision Support in Flood Management , 2014, Comput. Graph. Forum.

[26]  Gennady L. Andrienko,et al.  Spatial Generalization and Aggregation of Massive Movement Data , 2011, IEEE Transactions on Visualization and Computer Graphics.

[27]  Christophe Hurter,et al.  Graph Bundling by Kernel Density Estimation , 2012, Comput. Graph. Forum.

[28]  Kirsi Virrantaus,et al.  Space–time density of trajectories: exploring spatio-temporal patterns in movement data , 2010, Int. J. Geogr. Inf. Sci..

[29]  Christophe Hurter,et al.  Skeleton-Based Edge Bundling for Graph Visualization , 2011, IEEE Transactions on Visualization and Computer Graphics.

[30]  Christophe Hurter,et al.  Attribute-driven edge bundling for general graphs with applications in trail analysis , 2015, 2015 IEEE Pacific Visualization Symposium (PacificVis).