Linear finite element superconvergence on simplicial meshes

We study the linear finite element gradient superconvergence on special simplicial meshes which satisfy an edge pair condition. This special geometric condition implies that for most simplexes in the mesh, the lengths of each pair of opposite edges in each 3-face are assumed to differ only by O(h1+α) for some constant α > 0, with h being the mesh parameter. To analyze the interplant gradient superconvergence, we present a local error expansion formula in general n dimensional space which also motivates the condition on meshes. In the three dimensional space, we show that the gradient of the linear finite element solution uh is superconvergent to the gradient of the linear interpolatant uI with an order O(h 1+ρ) for 0 < ρ ≤ α. Numerical examples are presented to verify the theoretical findings. While we illustrate that tetrahedral meshes satisfying the edge pair condition can often be produced in three dimension, we also show that this may not be the case in higher dimensional spaces.

[1]  Zhimin Zhang,et al.  A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..

[2]  Gordon M. Crippen,et al.  Distance Geometry and Molecular Conformation , 1988 .

[3]  Allen Gersho,et al.  Asymptotically optimal block quantization , 1979, IEEE Trans. Inf. Theory.

[4]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[5]  D. Naylor Filling space with tetrahedra , 1999 .

[6]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[7]  M. Krízek,et al.  SUPERCONVERGENCE PHENOMENA ON THREE-DIMENSIONAL MESHES , 2005 .

[8]  Michal Krizek,et al.  Gradient superconvergence on uniform simplicial partitions of polytopes , 2003 .

[9]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[10]  Q. Du,et al.  Recent progress in robust and quality Delaunay mesh generation , 2006 .

[11]  Timothy F. Havel Some Examples of the Use of Distances as Coordinates for Euclidean Geometry , 1991, J. Symb. Comput..

[12]  George Goodsell,et al.  Pointwise superconvergence of the gradient for the linear tetrahedral element , 1994 .

[13]  Donald J. Newman,et al.  The hexagon theorem , 1982, IEEE Trans. Inf. Theory.

[14]  Q. Du,et al.  The optimal centroidal Voronoi tessellations and the gersho's conjecture in the three-dimensional space , 2005 .

[15]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[16]  Zhimin Zhang,et al.  Analysis of recovery type a posteriori error estimators for mildly structured grids , 2003, Math. Comput..

[17]  Jan Brandts History and future of superconvergence in three-dimensional finite element methods , 2001 .

[18]  Ahmed Naga,et al.  THE POLYNOMIAL-PRESERVING RECOVERY FOR HIGHER ORDER FINITE ELEMENT METHODS IN 2D AND 3D , 2005 .

[19]  Jinchao Xu,et al.  Asymptotically Exact A Posteriori Error Estimators, Part I: Grids with Superconvergence , 2003, SIAM J. Numer. Anal..

[20]  Leonard M. Blumenthal,et al.  Theory and applications of distance geometry , 1954 .

[21]  Ian H. Sloan,et al.  Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point , 1996 .

[22]  Jie Chen,et al.  Three-Dimensional Finite Element Superconvergent Gradient Recovery on Par6 Patterns , 2010 .

[23]  LONG CHEN,et al.  SUPERCONVERGENCE OF TETRAHEDRAL LINEAR FINITE ELEMENTS , 2005 .

[24]  Yunqing Huang,et al.  Convergent Adaptive Finite Element Method Based on Centroidal Voronoi Tessellations and Superconvergence , 2011 .