Automated continuous learn and improvement process of energy efficiency in manufacturing

Optimizing the energy efficiency of machine tools automatically is promising. There are several metrics to be considered when it comes to automated optimization approaches in serial production which are especially quality, technical availability, and cycle time. These are not supposed to be impaired whereas they are indicated as a central obstacle. The measurements and the machine data show the actions happening in the machine which also leads to the data-driven traceability of machine states. This article presents a method to formulate the necessary expert knowledge to optimize the energy efficiency of a machine tool and is basically done by a decision tree which leads to a set of rules which will be explained in this article. This set of rules coordinate an optimization algorithm, which technically manipulates selected variables under the given rules. The development and is a result of a research which was done at the serial production of camshafts at the MB plant in Berlin.

[1]  Jörg Krüger,et al.  A practical approach to reduce energy consumption in a serial production environment by shutting down subsystems of a machine tool , 2019 .

[2]  Stefan Wrobel,et al.  A review of machine learning for the optimization of production processes , 2019, The International Journal of Advanced Manufacturing Technology.

[3]  Shanlin Yang,et al.  Big data driven smart energy management: From big data to big insights , 2016 .

[4]  Johannes Triebs,et al.  Effizienzsteigerung von Werkzeugmaschinen durch Optimierung der Technologien zum Komponentenbetrieb EWOTeK : Verbundprojekt im Rahmenkonzept 'Forschung für die Produktion von morgen' 'Ressourceneffizienz in der Produktion' des Bundesministeriums für Bildung und Forschung (BMBF) , 2012 .

[5]  Christophe Lecoutre,et al.  Constraint Networks: Techniques and Algorithms , 2009 .

[6]  Hinnerk Hagenah,et al.  Data-driven inline optimization of the manufacturing process of car body parts , 2016 .

[7]  Andreas Kuhnle,et al.  Data Analytics for Manufacturing Systems – A Data-Driven Approach for Process Optimization , 2019, Procedia CIRP.

[8]  Christoph Herrmann,et al.  Industrie 4.0 und die Steigerung der Energieeffizienz in der Produktion , 2017 .

[9]  Steven Skiena,et al.  The Algorithm Design Manual , 2020, Texts in Computer Science.

[10]  Jay Lee,et al.  Industrial Big Data Analytics and Cyber-physical Systems for Future Maintenance & Service Innovation , 2015 .

[11]  Alfred Schulze,et al.  Statistische Verfahren zur Maschinen- und Prozessqualifikation , 2009, Statistische Verfahren zur Maschinen- und Prozessqualifikation.

[12]  Sung-Hoon Ahn,et al.  Towards greener machine tools – A review on energy saving strategies and technologies , 2015 .

[13]  Xun Xu,et al.  Cyber-physical Machine Tool – The Era of Machine Tool 4.0☆ , 2017 .

[14]  Christoph Herrmann,et al.  Automated production data integration for energy-oriented process chain design , 2018 .