Spatial Fuzzy Clustering using EM and Markov Random Fields

AbstractMethods are investigated in order to partition in k groups a set of n multivariate observation vectorslocated at neighboring geographic sites; applications include image segmentation, ecological or soil datacartography. In this perspective,the deterministic variant of the EM procedure described in Zhang (1992)for hiddenMarkov randomfieldsis shownto beequivalentto the optimization ofa spatialfuzzyclusteringcriterion using the so-called Neighborhood EM algorithm (Ambroise, Dang & Govaert 1997, Ambroise1996). The obtained fuzzy partition can be interpreted as the (nk) posterior probabilities that theobservations belong to the K groups, computed by an efficientiterative method based on the mean fieldapproximationprinciple. Theresulting algorithm maybeviewedas anextensionof thek-meansalgorithmto fuzzy clustering and spatial data.Keywords: Fuzzyclustering,spatialdata,unsupervisedimagesegmentation,hiddenMarkovrandomfields,EM algorithm, mean field approximation. 1 INTRODUCTION Spatial clustering goals. In exploratory data analysis, clustering techniques aim to summarize a set of

[1]  Christophe Ambroise,et al.  Approche probabiliste en classification automatique et contraintes de voisinage , 1996 .

[2]  Gérard Govaert,et al.  Clustering of Spatial Data by the EM Algorithm , 1997 .

[3]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[4]  Bernard Chalmond,et al.  An iterative Gibbsian technique for reconstruction of m-ary images , 1989, Pattern Recognit..

[5]  Gérard Govaert,et al.  Gaussian parsimonious clustering models , 1995, Pattern Recognit..

[6]  L. Younes Parametric Inference for imperfectly observed Gibbsian fields , 1989 .

[7]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[9]  Jun Zhang The mean field theory in EM procedures for Markov random fields , 1992, IEEE Trans. Signal Process..

[10]  Gérard Govaert Classification binaire et modèles , 1990 .

[11]  Tomaso Poggio,et al.  Probabilistic Solution of Ill-Posed Problems in Computational Vision , 1987 .

[12]  R. Hathaway Another interpretation of the EM algorithm for mixture distributions , 1986 .

[13]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[14]  James C. Bezdek,et al.  Prototype classification and feature selection with fuzzy sets , 1977, IEEE Transactions on Systems, Man, and Cybernetics.