Cartan decomposition of SU(2n) and control of spin systems

[1]  R. Brockett,et al.  Time optimal control in spin systems , 2000, quant-ph/0006114.

[2]  Herschel Rabitz,et al.  Quantum control by decompositions of SU(2) , 2000 .

[3]  H. Rabitz,et al.  Explicit generation of unitary transformations in a single atom or molecule , 2000 .

[4]  Nik Weaver On the universality of almost every quantum logic gate , 2000 .

[5]  S. Glaser,et al.  Unitary bounds and controllability of quantum evolution in NMR spectroscopy , 1999 .

[6]  S. Glaser,et al.  Design of NMR pulse experiments with optimum sensitivity: coherence-order-selective transfer in I2S and I3S spin systems , 1998 .

[7]  S. Glaser,et al.  Unitary control in quantum ensembles: maximizing signal intensity in coherent spectroscopy , 1998, Science.

[8]  Raimund J. Ober,et al.  On the class of attainable multidimensional NMR spectra , 1997 .

[9]  Timothy F. Havel,et al.  Ensemble quantum computing by NMR spectroscopy , 1997, Proc. Natl. Acad. Sci. USA.

[10]  N. Gershenfeld,et al.  Bulk Spin-Resonance Quantum Computation , 1997, Science.

[11]  Raimund J. Ober,et al.  A system theoretic formulation of NMR experiments , 1996 .

[12]  Ramakrishna,et al.  Relation between quantum computing and quantum controllability. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[13]  Law,et al.  Arbitrary control of a quantum electromagnetic field. , 1996, Physical review letters.

[14]  Lloyd,et al.  Almost any quantum logic gate is universal. , 1995, Physical review letters.

[15]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[16]  Ramakrishna,et al.  Controllability of molecular systems. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[17]  DiVincenzo,et al.  Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[18]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[19]  Herschel Rabitz,et al.  Coherent Control of Quantum Dynamics: The Dream Is Alive , 1993, Science.

[20]  Kevin K. Lehmann,et al.  Optimal design of external fields for controlling molecular motion: application to rotation , 1990 .

[21]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[22]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[23]  J. Wolf Spaces of Constant Curvature , 2010 .

[24]  Richard R. Ernst,et al.  Product operator formalism for the description of NMR pulse experiments , 1984 .

[25]  T. Tarn,et al.  On the controllability of quantum‐mechanical systems , 1983 .

[26]  S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .

[27]  R. Gilmore,et al.  Lie Groups, Lie Algebras, and Some of Their Applications , 1974 .

[28]  H. Sussmann,et al.  Control systems on Lie groups , 1972 .

[29]  H. Hermes,et al.  Nonlinear Controllability via Lie Theory , 1970 .

[30]  K. Nomizu,et al.  Foundations of Differential Geometry , 1963 .