STUMP: Exploiting Position Diversity in the Staggered TDMA Underwater MAC Protocol

In this paper, we propose the Staggered TDMA Underwater MAC Protocol (STUMP), a scheduled, collision free TDMA-based MAC protocol that leverages node position diversity and the low propagation speed of the underwater channel. STUMP uses propagation delay information to overlap node communication and increase channel utilization. Our work yields several important conclusions. First, leveraging node position diversity through scheduling yields large improvements in channel utilization. Second, STUMP does not require tight node synchronization to achieve high channel utilization, allowing nodes to use simple or more energy efficient synchronization protocols. Finally, we briefly present and evaluate algorithms that derive STUMP schedules.

[1]  Kee Chaing Chua,et al.  MU-Sync: a time synchronization protocol for underwater mobile networks , 2008, Underwater Networks.

[2]  Milica Stojanovic,et al.  On the relationship between capacity and distance in an underwater acoustic communication channel , 2006, Underwater Networks.

[3]  M. Stojanovic,et al.  Slotted FAMA: a MAC protocol for underwater acoustic networks , 2006, OCEANS 2006 - Asia Pacific.

[4]  I. Akyildiz,et al.  A Distributed CDMA Medium Access Control for Underwater Acoustic Sensor Networks , 2007 .

[5]  Dario Pompili,et al.  A CDMA-based Medium Access Control for UnderWater Acoustic Sensor Networks , 2009, IEEE Transactions on Wireless Communications.

[6]  Dimitri P. Bertsekas,et al.  Data networks (2nd ed.) , 1992 .

[7]  Walter Ukovich,et al.  A Mathematical Model for Periodic Scheduling Problems , 1989, SIAM J. Discret. Math..

[8]  Winston Khoon Guan Seah,et al.  Distributed CDMA-based MAC Protocol for Underwater Sensor Networks , 2007, 32nd IEEE Conference on Local Computer Networks (LCN 2007).

[9]  Bhaskar Krishnamachari,et al.  Understanding spatio-temporal uncertainty in medium access with ALOHA protocols , 2007, Underwater Networks.

[10]  Milica Stojanovic,et al.  A MAC protocol for ad-hoc underwater acoustic sensor networks , 2006, Underwater Networks.

[11]  Kee Chaing Chua,et al.  Aloha-Based MAC Protocols with Collision Avoidance for Underwater Acoustic Networks , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[12]  M.J. Ryan,et al.  An Adaptive Propagation-delay-tolerant MAC Protocol for Underwater Acoustic Sensor Networks , 2007, OCEANS 2007 - Europe.

[13]  P. Casari,et al.  A Comparison of Multiple Access Techniques in Clustered Underwater Acoustic Networks , 2007, OCEANS 2007 - Europe.

[14]  M. Stojanovic,et al.  Multi-cluster protocol for ad hoc mobile underwater acoustic networks , 2003, Oceans 2003. Celebrating the Past ... Teaming Toward the Future (IEEE Cat. No.03CH37492).

[15]  Dario Pompili,et al.  Underwater acoustic sensor networks: research challenges , 2005, Ad Hoc Networks.

[16]  Jun-Hong Cui,et al.  R-MAC: An Energy-Efficient MAC Protocol for Underwater Sensor Networks , 2007, International Conference on Wireless Algorithms, Systems and Applications (WASA 2007).

[17]  Panganamala Ramana Kumar,et al.  RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN , 2001 .

[18]  Justin Yackoski,et al.  UW-FLASHR: achieving high channel utilization in a time-based acoustic mac protocol , 2008, Underwater Networks.

[19]  Christos G. Cassandras,et al.  On maximum lifetime routing in Wireless Sensor Networks , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[20]  John S. Heidemann,et al.  Time Synchronization for High Latency Acoustic Networks , 2006, Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications.

[21]  Thomas H. Cormen,et al.  Introduction to algorithms [2nd ed.] , 2001 .

[22]  Shahrokh Valaee,et al.  Link Scheduling for Minimum Delay in Spatial Re-Use TDMA , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[23]  S. Ramanathan,et al.  A unified framework and algorithm for channel assignment in wireless networks , 1999, Wirel. Networks.

[24]  Injong Rhee,et al.  DRAND: Distributed Randomized TDMA Scheduling for Wireless Ad Hoc Networks , 2009, IEEE Trans. Mob. Comput..

[25]  X. Lurton An Introduction to Underwater Acoustics , 2002 .

[26]  Dimitri P. Bertsekas,et al.  Data Networks , 1986 .

[27]  Milica Stojanovic,et al.  Recent advances in high-speed underwater acoustic communications , 1996 .

[28]  Lee Freitag,et al.  Analysis of channel effects on direct-sequence and frequency-hopped spread-spectrum acoustic communication , 2001 .

[29]  K. Kebkal,et al.  Data-link protocol for underwater acoustic networks , 2005, Europe Oceans 2005.

[30]  Milica Stojanovic,et al.  On the Relationship between Transmission Power and Capacity of an Underwater Acoustic Communication Channel , 2008, OCEANS 2008 - MTS/IEEE Kobe Techno-Ocean.

[31]  James Preisig,et al.  Acoustic propagation considerations for underwater acoustic communications network development , 2006, Underwater Networks.