Mechanical properties and tensile deformation behavior of a reduced activated ferritic-martensitic (RAFM) steel at elevated temperatures

[1]  L. Qi,et al.  Charting the ‘composition-strength’ space for novel austenitic, martensitic and ferritic creep resistant steels , 2017 .

[2]  Huijun Li,et al.  Effects of tantalum on austenitic transformation kinetics of RAFM steel , 2017 .

[3]  Huijun Li,et al.  Study on microstructural evolution and constitutive modeling for hot deformation behavior of a low-carbon RAFM steel , 2017 .

[4]  K. C. Sahoo,et al.  Effect of thermal ageing on microstructure, tensile and impact properties of reduced activated ferritic-martensitic steel , 2017 .

[5]  B. M. Gonzalez,et al.  Strain hardening behavior and microstructural evolution during plastic deformation of dual phase, non-grain oriented electrical and AISI 304 steels , 2017 .

[6]  Yanan Yang,et al.  Mechanical properties and Portevin-Le Châtelier effect of a Ni-Cr-Mo alloy containing ordered phase with Pt2Mo-type structure at elevated temperature , 2017 .

[7]  Yuhki Satoh,et al.  Precipitation of carbides in F82H steels and its impact on mechanical strength , 2016 .

[8]  Huijun Li,et al.  Effects of tantalum content on the microstructure and mechanical properties of low-carbon RAFM steel , 2016 .

[9]  P. Nellist,et al.  STEM Optical Sectioning for Imaging Screw Dislocations Core Structures in BCC Metals , 2016, Microscopy and Microanalysis.

[10]  D. Caillard Dynamic strain ageing in iron alloys: The shielding effect of carbon , 2016 .

[11]  A. Sagara,et al.  Tensile properties of F82H steel after aging at 400–650 °C for 1000–30,000 h , 2015 .

[12]  D. Raabe,et al.  Dynamic strain aging studied at the atomic scale , 2015 .

[13]  Huijun Li,et al.  Phase Transformation Behavior and Microstructural Control of High-Cr Martensitic/Ferritic Heat-resistant Steels for Power and Nuclear Plants: A Review , 2015 .

[14]  D. Caillard,et al.  Dynamic strain aging caused by a new Peierls mechanism at high-temperature in iron , 2015 .

[15]  P. Chellapandi,et al.  Dynamic strain ageing, deformation, and fracture behavior of modified 9Cr–1Mo steel , 2015 .

[16]  Chenxi Liu,et al.  Evolution of creep damage in a modified ferritic heat resistant steel with excellent short-term creep performance and its oxide layer characteristic , 2014 .

[17]  Xunzhong Guo,et al.  The flow behaviors of CLAM steel at high temperature , 2014 .

[18]  Wei Yan,et al.  Evolution of microstructure and changes of mechanical properties of CLAM steel after long-term aging , 2013 .

[19]  H.-C. Schneider,et al.  Tensile and low cycle fatigue properties of EUROFER97-steel after 16.3 dpa neutron irradiation at 523, 623 and 723 K , 2013 .

[20]  M. D. Mathew,et al.  Influence of strain rate and temperature on tensile stress–strain and work hardening behaviour of 9Cr–1Mo ferritic steel , 2012 .

[21]  I. Guillot,et al.  Experimental analysis of the dynamic strain ageing for a modified T91 martensitic steel , 2012 .

[22]  G. Smith,et al.  Effects of heavy-ion irradiation on solute segregation to dislocations in oxide-dispersion-strengthened Eurofer 97 steel , 2011 .

[23]  Clément Keller,et al.  Influence of the temperature on the tensile behaviour of a modified 9Cr–1Mo T91 martensitic steel , 2010 .

[24]  Qing Huang,et al.  Effect of thermal ageing on tensile and creep properties of JLF-1 and CLAM steels , 2009 .

[25]  U. Ramamurty,et al.  Dynamic strain ageing in Ni-base superalloy 720Li , 2009 .

[26]  David S. Gelles,et al.  Status of reduced activation ferritic/martensitic steel development , 2007 .

[27]  A. Mateo,et al.  Dynamic strain ageing effects on superduplex stainless steels at intermediate temperatures , 2004 .

[28]  Takeo Muroga,et al.  Fracture toughness of low activation ferritic steel (JLF-1) weld joint at room temperature , 1998 .

[29]  A. Álamo,et al.  Physical metallurgy and mechanical behaviour of FeCrWTaV low activation martensitic steels: Effects of chemical composition , 1998 .

[30]  P Rodriguez,et al.  Serrated plastic flow , 1984 .