On the BMAP/G/1 G-queues with second optional service and multiple vacations

This paper deals with an BMAP/G/1 G-queues with second optional service and multiple vacations. Arrivals of positive customers and negative customers follow a batch Markovian arrival process (BMAP) and Markovian arrival process (MAP), respectively. After completion of the essential service of a customer, it may go for a second phase of service. The arrival of a negative customer removes the customer being in service. The server leaves for a vacation as soon as the system empties and is allowed to take repeated (multiple) vacations. By using the supplementary variables method and the censoring technique, we obtain the queue length distributions. We obtain the mean of the busy period based on the renewal theory.

[1]  Naishuo Tian,et al.  Vacation Queueing Models , 2006 .

[2]  E. Gelenbe Product-form queueing networks with negative and positive customers , 1991 .

[3]  Quan-Lin Li,et al.  A BMAP/G/1 Retrial Queue with a Server Subject to Breakdowns and Repairs , 2006, Ann. Oper. Res..

[4]  U. C. Gupta,et al.  BMAP/G/1/N queue with vacations and limited service discipline , 2006, Appl. Math. Comput..

[5]  Jongwoo Jeon,et al.  A new approach to an N/G/1 queue , 2000, Queueing Syst. Theory Appl..

[6]  Winfried K. Grassmann,et al.  Equilibrium distribution of block-structured Markov chains with repeating rows , 1990, Journal of Applied Probability.

[7]  Onno Boxma,et al.  The workload in the M/G/1 queue with work removal , 1995 .

[8]  Peter G. Harrison,et al.  Reliability modelling using G-queues , 2000, Eur. J. Oper. Res..

[9]  David M. Lucantoni,et al.  New results for the single server queue with a batch Markovian arrival process , 1991 .

[10]  Ciro D'Apice,et al.  Queueing Theory , 2003, Operations Research.

[11]  W. Whitt,et al.  The transient BMAP/G/l queue , 1994 .

[12]  Tetsuya Takine,et al.  MAP/G/1 QUEUES UNDER N-POLICY WITH AND WITHOUT VACATIONS , 1996 .

[13]  Alexander N. Dudin,et al.  A Retrial BMAP/PH/N System , 2002, Queueing Syst. Theory Appl..

[14]  Gang Uk Hwang,et al.  Supplementary variable method applied to the MAP/G/1 queueing system , 1998, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[15]  Yang Woo Shin,et al.  The BMAP/G/1 vacation queue with queue-length dependent vacation schedule , 1998, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[16]  Yutaka Takahashi,et al.  Queueing analysis: A foundation of performance evaluation, volume 1: Vacation and priority systems, Part 1: by H. Takagi. Elsevier Science Publishers, Amsterdam, The Netherlands, April 1991. ISBN: 0-444-88910-8 , 1993 .

[17]  Yutaka Baba,et al.  On the Mx/G /1 queue with vacation time , 1986 .

[18]  U. C. Gupta,et al.  Computing queue length distributions in MAP/G/1/N queue under single and multiple vacation , 2006, Appl. Math. Comput..

[19]  Marcel F. Neuts,et al.  Matrix-geometric solutions in stochastic models - an algorithmic approach , 1982 .

[20]  Kailash C. Madan,et al.  An M/G/1 queue with second optional service , 1999, Queueing Syst. Theory Appl..

[21]  Erol Gelenbe,et al.  Queues with negative arrivals , 1991, Journal of Applied Probability.

[22]  Quan-Lin Li,et al.  A MAP/G/1 Queue with Negative Customers , 2004, Queueing Syst. Theory Appl..

[23]  Naishuo Tian,et al.  Vacation Queueing Models Theory and Applications , 2006 .

[24]  Gautam Choudhury,et al.  A batch arrival queue with an additional service channel under N-policy , 2004, Appl. Math. Comput..

[25]  J. Medhi,et al.  A Single Server Poisson Input Queue with a Second Optional Channel , 2002, Queueing Syst. Theory Appl..

[26]  Quan-Lin Li,et al.  A CONSTRUCTIVE METHOD FOR FINDING fl-INVARIANT MEASURES FOR TRANSITION MATRICES OF M=G=1 TYPE , 2002 .

[27]  B. T. Doshi,et al.  Queueing systems with vacations — A survey , 1986, Queueing Syst. Theory Appl..

[28]  Y. W. Yang Woo Shin,et al.  BMAP/G/1 queue with correlated arrivals of customers and disasters , 2004, Oper. Res. Lett..

[29]  Peter G. Taylor,et al.  Advances in Algorithmic Methods for Stochastic Models , 2000 .

[30]  Kyung C. Chae,et al.  Batch arrival queue with N-policy and single vacation , 1995, Comput. Oper. Res..

[31]  Gautam Choudhury A batch arrival queue with a vacation time under single vacation policy , 2002, Comput. Oper. Res..

[32]  Jau-Chuan Ke An M[x]/G/1 system with startup server and J additional options for service , 2008 .

[33]  Wei Li,et al.  Censoring, Factorizations, and Spectral Analysis for Transition Matrices with Block-Repeating Entries , 2001 .