Entropy Stable Finite Volume Scheme for Ideal Compressible MHD on 2-D Cartesian Meshes

We present a finite volume scheme for ideal compressible magnetohydrodynamic (MHD) equations on two-dimensional Cartesian meshes. The semidiscrete scheme is constructed to be entropy stable by using the symmetrized version of the equations as introduced by Godunov. We first construct an entropy conservative scheme for which sufficient condition is given and we also derive a numerical flux satisfying this condition. Second, following a standard procedure, we make the scheme entropy stable by adding dissipative flux terms using jumps in entropy variables. A semi-discrete high resolution scheme is constructed that preserves the entropy stability of the first order scheme. We demonstrate the robustness of this new scheme on several standard MHD test cases.

[1]  Katharine Gurski,et al.  An HLLC-Type Approximate Riemann Solver for Ideal Magnetohydrodynamics , 2001, SIAM J. Sci. Comput..

[2]  J. Brackbill,et al.  The Effect of Nonzero ∇ · B on the numerical solution of the magnetohydrodynamic equations☆ , 1980 .

[3]  James A. Rossmanith,et al.  An Unstaggered, High-Resolution Constrained Transport Method for Magnetohydrodynamic Flows , 2006, SIAM J. Sci. Comput..

[4]  M. Brio,et al.  An upwind differencing scheme for the equations of ideal magnetohydrodynamics , 1988 .

[5]  Christian Klingenberg,et al.  A multiwave approximate Riemann solver for ideal MHD based on relaxation. I: theoretical framework , 2007, Numerische Mathematik.

[6]  J. T. ON THE ROLE OF INVOLUTIONS IN THE DISCONTINUOUS GALERKIN DISCRETIZATION OF MAXWELL AND MAGNETOHYDRODYNAMIC SYSTEMS , 2005 .

[7]  James A. Rossmanith,et al.  Finite difference weighted essentially non-oscillatory schemes with constrained transport for 2D ideal Magnetohydrodynamics , 2013, ICOPS 2013.

[8]  Paul R. Woodward,et al.  An approximate Riemann solver for ideal magnetohydrodynamics , 1994 .

[9]  Chi-Wang Shu,et al.  Locally Divergence-Free Discontinuous Galerkin Methods for MHD Equations , 2005, J. Sci. Comput..

[10]  Dinshaw S. Balsara Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics , 2009, J. Comput. Phys..

[11]  Michael Dumbser,et al.  Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics , 2008, Journal of Computational Physics.

[12]  C. Munz,et al.  Hyperbolic divergence cleaning for the MHD equations , 2002 .

[13]  Philippe G. LeFloch,et al.  Fully Discrete, Entropy Conservative Schemes of ArbitraryOrder , 2002, SIAM J. Numer. Anal..

[14]  Liwei Xu,et al.  Arbitrary order exactly divergence-free central discontinuous Galerkin methods for ideal MHD equations , 2012, J. Comput. Phys..

[15]  G. Tóth The ∇·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes , 2000 .

[16]  J. Hawley,et al.  Simulation of magnetohydrodynamic flows: A Constrained transport method , 1988 .

[17]  Bertram Taetz,et al.  An unstaggered constrained transport method for the 3D ideal magnetohydrodynamic equations , 2010, J. Comput. Phys..

[18]  Thierry Gallouët,et al.  On a rough Godunov scheme , 1996 .

[19]  Eitan Tadmor,et al.  The numerical viscosity of entropy stable schemes for systems of conservation laws. I , 1987 .

[20]  P. Londrillo,et al.  High-Order Upwind Schemes for Multidimensional Magnetohydrodynamics , 1999, astro-ph/9910086.

[21]  Csic Building RELAXATION SOLVERS FOR IDEAL MHD EQUATIONS-A REVIEW , 2010 .

[22]  S. Orszag,et al.  Small-scale structure of two-dimensional magnetohydrodynamic turbulence , 1979, Journal of Fluid Mechanics.

[23]  Eitan Tadmor,et al.  Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems , 2003, Acta Numerica.

[24]  Praveen Chandrashekar,et al.  Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations , 2012, ArXiv.

[25]  Christian Klingenberg,et al.  A multiwave approximate Riemann solver for ideal MHD based on relaxation II: numerical implementation with 3 and 5 waves , 2010, Numerische Mathematik.

[26]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[27]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[28]  Manuel Torrilhon,et al.  A Constrained Transport Upwind Scheme for Divergence-free Advection , 2003 .

[29]  Eitan Tadmor,et al.  Arbitrarily High-order Accurate Entropy Stable Essentially Nonoscillatory Schemes for Systems of Conservation Laws , 2012, SIAM J. Numer. Anal..

[30]  Philip L. Roe,et al.  Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks , 2009, J. Comput. Phys..

[31]  Qi Tang,et al.  Finite difference weighted essentially non-oscillatory schemes with constrained transport for ideal magnetohydrodynamics , 2013, J. Comput. Phys..

[32]  D. Balsara,et al.  A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations , 1999 .

[33]  Francesco Miniati,et al.  A Divergence-free Upwind Code for Multidimensional Magnetohydrodynamic Flows , 1998 .

[34]  P. Janhunen,et al.  A Positive Conservative Method for Magnetohydrodynamics Based on HLL and Roe Methods , 2000 .

[35]  Kenneth G. Powell,et al.  AN APPROXIMATE RIEMANN SOLVER FOR MAGNETOHYDRODYNAMICS (That Works in More than One Dimension) , 1994 .

[36]  T. Barth On the Role of Involutions in the Discontinuous Galerkin Discretization of Maxwell and Magnetohydrodynamic Systems , 2013 .