All Frequency Direct Illumination Using Visibility Correspondence Generated With Spherical Voronoi Diagrams

Vectorized visibility is a powerful visibility representation for rendering direct illumination with all frequency quality. However, the existing rendering method requires the visibility functions to be synthesized three times, followed with three radiance evaluation, for each triangle of the 3D model. We propose an alternative method to enhance vectorized visibility, such that we can directly interpolate the vectorized visibility, and therefore, reduce the computation bottleneck, i.e. the radiance evaluation, to just once. To facilitate the interpolation, we need to generate the correspondence among the three sampled visibility functions for each triangular patch. This paper uses spherical Voronoi diagram as a tool to conduct a preliminary correspondence generation, instead of doing brute force search. Additional treatments are also implemented to ensure that the interpolated visibility functions have smooth transition across the 3D model. With our method, we have more flexibility to manipulate the visibility functions in the favour of rendering speed and render the all frequency direct illumination twice as fast as the previous method.

[1]  Wojciech Matusik,et al.  Progressively-Refined Reflectance Functions from Natural Illumination , 2004 .

[2]  Anselmo Lastra,et al.  Interactive summed-area table generation for glossy environmental reflections , 2005, SIGGRAPH '05.

[3]  Jaakko Lehtinen,et al.  An Improved Physically‐Based Soft Shadow Volume Algorithm , 2006, Comput. Graph. Forum.

[4]  Kun Zhou,et al.  Interactive relighting with dynamic BRDFs , 2007, SIGGRAPH 2007.

[5]  Shi-Min Hu,et al.  Spherical Piecewise Constant Basis Functions for All-Frequency Precomputed Radiance Transfer , 2008, IEEE Transactions on Visualization and Computer Graphics.

[6]  Timo Aila,et al.  Interactive reconstruction of Monte Carlo image sequences using a recurrent denoising autoencoder , 2017, ACM Trans. Graph..

[7]  Andrew Chi-Sing Leung,et al.  Spatiotemporal Sampling of Dynamic Environment Sequences , 2011, IEEE Transactions on Visualization and Computer Graphics.

[8]  Andrew Chi-Sing Leung,et al.  All-Frequency Lighting with Multiscale Spherical Radial Basis Functions , 2010, IEEE Transactions on Visualization and Computer Graphics.

[9]  Thorsten Grosch,et al.  Precomputed illuminance composition for real-time global illumination , 2016, I3D.

[10]  Anselmo Lastra,et al.  Fast Summed‐Area Table Generation and its Applications , 2005, Comput. Graph. Forum.

[11]  Kenny Mitchell,et al.  Visibility Silhouettes for Semi‐Analytic Spherical Integration , 2014, Comput. Graph. Forum.

[12]  Serge J. Belongie,et al.  Structured importance sampling of environment maps , 2003, ACM Trans. Graph..

[13]  Rui Wang,et al.  All-frequency relighting of glossy objects , 2006, TOGS.

[14]  Charles S. Peskin,et al.  On the construction of the Voronoi mesh on a sphere , 1985 .

[15]  Jan Kautz,et al.  Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments , 2002 .

[16]  Andrew Chi-Sing Leung,et al.  An RBF-based compression method for image-based relighting , 2006, IEEE Transactions on Image Processing.

[17]  Rui Wang,et al.  Precomputed Visibility Cuts for Interactive Relighting with Dynamic BRDFs , 2007, 15th Pacific Conference on Computer Graphics and Applications (PG'07).

[18]  Harry Shum,et al.  Eurographics Symposium on Rendering (2004) All-frequency Precomputed Radiance Transfer for Glossy Objects , 2022 .

[19]  Ravi Ramamoorthi,et al.  Real-time BRDF editing in complex lighting , 2006, ACM Trans. Graph..

[20]  Franklin C. Crow,et al.  Summed-area tables for texture mapping , 1984, SIGGRAPH.

[21]  Marina L. Gavrilova,et al.  Voronoi diagram in optimal path planning , 2007, 4th International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2007).

[22]  Andrew Chi-Sing Leung,et al.  Spherical Q2-tree for sampling dynamic environment sequences , 2005, EGSR '05.

[23]  A. J. Walker New fast method for generating discrete random numbers with arbitrary frequency distributions , 1974 .

[24]  Dipl.-Ing,et al.  Real-time Rendering , 2022 .

[25]  Pat Hanrahan,et al.  All-frequency shadows using non-linear wavelet lighting approximation , 2003, ACM Trans. Graph..

[26]  Jaakko Lehtinen,et al.  Soft shadow volumes for ray tracing , 2005, ACM Trans. Graph..

[27]  Jitendra Malik,et al.  Recovering high dynamic range radiance maps from photographs , 1997, SIGGRAPH '08.

[28]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[29]  Turner Whitted,et al.  An improved illumination model for shaded display , 1979, CACM.

[30]  Napaporn Metaaphanon,et al.  Rendering techniques of final fantasy XV , 2016, SIGGRAPH Talks.

[31]  Wolfgang Heidrich,et al.  Bidirectional importance sampling for illumination from environment maps , 2004, SIGGRAPH '04.

[32]  Thomas Bashford-Rogers,et al.  Importance Driven Environment Map Sampling , 2014, IEEE Transactions on Visualization and Computer Graphics.

[33]  Peter-Pike J. Sloan,et al.  Clustered principal components for precomputed radiance transfer , 2003, ACM Trans. Graph..

[34]  Motoi Iwata,et al.  Segmentation of Page Images Using the Area Voronoi Diagram , 1998, Comput. Vis. Image Underst..

[35]  V. Ostromoukhov,et al.  Fast hierarchical importance sampling with blue noise properties , 2004, SIGGRAPH 2004.

[36]  Robert L. Cook,et al.  Distributed ray tracing , 1984, SIGGRAPH.

[37]  Szymon Rusinkiewicz,et al.  Adaptive numerical cumulative distribution functions for efficient importance sampling , 2005, EGSR '05.

[38]  Jan Kautz,et al.  Fast Arbitrary BRDF Shading for Low-Frequency Lighting Using Spherical Harmonics , 2002, Rendering Techniques.

[39]  Rui Wang,et al.  Fast, realistic lighting and material design using nonlinear cut approximation , 2008, SIGGRAPH Asia '08.

[40]  Bui Tuong Phong Illumination for computer generated pictures , 1975, Commun. ACM.

[41]  Baining Guo,et al.  All-frequency rendering of dynamic, spatially-varying reflectance , 2009, ACM Trans. Graph..

[42]  Mateu Sbert,et al.  Weighted Importance Sampling Techniques for Monte Carlo Radiosity , 2000, Rendering Techniques.

[43]  Michael D. Vose,et al.  A Linear Algorithm For Generating Random Numbers With a Given Distribution , 1991, IEEE Trans. Software Eng..

[44]  Leonidas J. Guibas,et al.  Optimally combining sampling techniques for Monte Carlo rendering , 1995, SIGGRAPH.

[45]  Steve Marschner,et al.  Microfacet Models for Refraction through Rough Surfaces , 2007, Rendering Techniques.

[46]  Andrew Chi-Sing Leung,et al.  All-Frequency Direct Illumination with Vectorized Visibility , 2015, IEEE Transactions on Visualization and Computer Graphics.

[47]  Kun Zhou,et al.  Analytic Double Product Integrals for All-Frequency Relighting , 2013, IEEE Transactions on Visualization and Computer Graphics.

[48]  Yu-Ting Tsai,et al.  All-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximation , 2006, SIGGRAPH '06.

[49]  Weifeng Sun,et al.  Generalized wavelet product integral for rendering dynamic glossy objects , 2006, SIGGRAPH '06.