Incompressible Viscous Ows

In this article, we describe some approaches to the eecient numerical computation of viscous incompressible ows governed by the Navier-Stokes equations. We concentrate on laminar ows, stationary as well as nonstationary, for Reynolds numbers of moderate size, and in general domains. The emphasis is on spatial discretization by the nite element method. We discuss the treatment of the incompressibility constraint, the time-stepping process, techniques of error control and mesh adaptation and the solution of the resulting indeenite algebraic equations.

[1]  Guido Kanschat,et al.  The local discontinuous Galerkin method for the Oseen equations , 2003, Math. Comput..

[2]  F. Thomasset Finite element methods for Navier-Stokes equations , 1980 .

[3]  R. Bank,et al.  A class of iterative methods for solving saddle point problems , 1989 .

[4]  Rolf Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem, part III. Smoothing property and higher order error estimates for spatial discretization , 1988 .

[5]  R. Rannacher,et al.  On the boundary value problem of the biharmonic operator on domains with angular corners , 1980 .

[6]  Roland Becker,et al.  Solution of a stationary benchmark problem for natural convection with large temperature difference , 2002 .

[7]  Rolf Rannacher,et al.  Implicit Time-Discretization of the Nonstationary Incompressible Navier-Stokes Equations , 1995 .

[8]  Jie Shen On error estimates of projection methods for Navier-Stokes equations: first-order schemes , 1992 .

[9]  Miloslav Feistauer,et al.  Mathematical Methods in Fluid Dynamics , 1993 .

[10]  R. RannacherInstitut,et al.  Weighted a Posteriori Error Control in Fe Methods , 1995 .

[11]  Guido Kanschat,et al.  Preconditioning Methods for Local Discontinuous Galerkin Discretizations , 2003, SIAM J. Sci. Comput..

[12]  Roland Becker,et al.  Mesh Adaptation for Stationary Flow Control , 2001 .

[13]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[14]  J. Oden,et al.  An a posteriori error estimate for finite element approximations of the Navier-Stokes equations , 1994 .

[15]  Jian‐Guo Liu,et al.  Projection method I: convergence and numerical boundary layers , 1995 .

[16]  P. G. Ciarlet,et al.  Numerical Methods for Fluids, Part 3 , 2003 .

[17]  Gunar Matthies,et al.  Non-Nested Multi-Level Solvers for Finite Element Discretisations of Mixed Problems , 2002, Computing.

[18]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.

[19]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[20]  R. Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem. I : Regularity of solutions and second-order error estimates for spatial discretization , 1982 .

[21]  L. Quartapelle,et al.  Numerical solution of the incompressible Navier-Stokes equations , 1993, International series of numerical mathematics.

[23]  T. Apel Anisotropic Finite Elements: Local Estimates and Applications , 1999 .

[24]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[25]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[26]  J. Szmelter Incompressible flow and the finite element method , 2001 .

[27]  Liudas Stupelis Navier-Stokes Equations in Irregular Domains , 1995 .

[28]  Vincent Heuveline,et al.  On higher‐order mixed FEM for low Mach number flows: application to a natural convection benchmark problem , 2003 .

[29]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[30]  M. Giles On adjoint equations for error analysis and optimal grid adaptation in CFD , 1997 .

[31]  Rolf Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem, part II: Stability of solutions and error estimates uniform in time , 1986 .

[32]  Gabriel Wittum,et al.  On the Construction of Robust Smoothers for Incompressible Flow Problems , 1994 .

[33]  Thomas J. R. Hughes,et al.  Encyclopedia of computational mechanics , 2004 .

[34]  R. Rannacher On chorin's projection method for the incompressible navier-stokes equations , 1992 .

[35]  R. Rannacher Finite element solution of diffusion problems with irregular data , 1984 .

[36]  Rolf Rannacher,et al.  Fundamental directions in mathematical fluid mechanics , 2000 .

[37]  R. Rannacher,et al.  Simple nonconforming quadrilateral Stokes element , 1992 .

[38]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[39]  Kenneth Eriksson,et al.  Time discretization of parabolic problems by the discontinuous Galerkin method , 1985 .

[40]  Long Chen INTRODUCTION TO MULTIGRID METHODS , 2005 .

[41]  S. Turek Tools for Simulating Nonstationary Incompressible Flow via Discretely Divergence{free Finite Element Models , 1994 .