Biases in Particle Swarm Optimization

The most common versions of particle swarm optimization PSO algorithms are rotationally variant. It has also been pointed out that PSO algorithms can concentrate particles along paths parallel to the coordinate axes. In this paper, the authors explicitly connect these two observations by showing that the rotational variance is related to the concentration along lines parallel to the coordinate axes. Based on this explicit connection, the authors create fitness functions that are easy or hard for PSO to solve, depending on the rotation of the function.

[1]  Kenneth A. De Jong,et al.  Using Markov Chains to Analyze GAFOs , 1994, FOGA.

[2]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[3]  R. Salomon Re-evaluating genetic algorithm performance under coordinate rotation of benchmark functions. A survey of some theoretical and practical aspects of genetic algorithms. , 1996, Bio Systems.

[4]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[5]  Chilukuri K. Mohan,et al.  Analysis of a simple particle swarm optimization system , 1998 .

[6]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[7]  J. Kennedy,et al.  Matching algorithms to problems: an experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[8]  E. Ozcan,et al.  Particle swarm optimization: surfing the waves , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[9]  R. Eberhart,et al.  Comparing inertia weights and constriction factors in particle swarm optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[10]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[11]  U. Baumgartner,et al.  Particle swarm optimization - mass-spring system analogon , 2002 .

[12]  Keiichiro Yasuda,et al.  Adaptive particle swarm optimization , 2003, SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme - System Security and Assurance (Cat. No.03CH37483).

[13]  Ioan Cristian Trelea,et al.  The particle swarm optimization algorithm: convergence analysis and parameter selection , 2003, Inf. Process. Lett..

[14]  T. Blackwell,et al.  Particle swarms and population diversity , 2005, Soft Comput..

[15]  Kevin D. Seppi,et al.  Exposing origin-seeking bias in PSO , 2005, GECCO '05.

[16]  Michael D. Vose,et al.  Modeling genetic algorithms with Markov chains , 1992, Annals of Mathematics and Artificial Intelligence.

[17]  Emilio F. Campana,et al.  Dynamic system analysis and initial particles position in Particle Swarm Optimization , 2006 .

[18]  Andries Petrus Engelbrecht,et al.  A study of particle swarm optimization particle trajectories , 2006, Inf. Sci..

[19]  Daniele Peri,et al.  Particle Swarm Optimization: efficient globally convergent modifications , 2006 .

[20]  Visakan Kadirkamanathan,et al.  Stability analysis of the particle dynamics in particle swarm optimizer , 2006, IEEE Transactions on Evolutionary Computation.

[21]  Martin Middendorf,et al.  On Trajectories of Particles in PSO , 2007, 2007 IEEE Swarm Intelligence Symposium.

[22]  N. Hansen,et al.  PSO Facing Non-Separable and Ill-Conditioned Problems , 2008 .

[23]  Russell C. Eberhart,et al.  Population diversity of particle swarms , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[24]  Russell C. Eberhart,et al.  Monitoring of particle swarm optimization , 2009, Frontiers of Computer Science in China.

[25]  Riccardo Poli,et al.  Mean and Variance of the Sampling Distribution of Particle Swarm Optimizers During Stagnation , 2009, IEEE Transactions on Evolutionary Computation.