Role of polygeneration in sustainable energy system development challenges and opportunities from optimization viewpoints

A sustainable energy system can be treated as a development of the distributed generation concept. It meets energy demands locally from renewable energy or/and high-efficiency polygeneration production technologies, and is characterized by energy and cost efficiency, reliability, and environmental-friendliness.

[1]  Peter B. Luh,et al.  Lagrangian relaxation based algorithm for trigeneration planning with storages , 2008, Eur. J. Oper. Res..

[2]  Charlle L. Sy,et al.  An affine adjustable robust model for generation and transmission network planning , 2014 .

[3]  Savita Kaul,et al.  Algae based biorefinery - how to make sense? , 2015 .

[4]  François Maréchal,et al.  Multi-Objective, Multi-Period Optimization of Biomass Conversion Technologies Using Evolutionary Algorithms and Mixed Integer Linear Programming (MILP) , 2013 .

[5]  Sven Werner District Heating and Cooling , 2013 .

[6]  Emanuele Graciosa Pereira,et al.  Sustainable energy: A review of gasification technologies , 2012 .

[7]  Risto Lahdelma,et al.  An efficient linear programming algorithm for combined heat and power production , 2003, Eur. J. Oper. Res..

[8]  Nesa L'abbe Wu,et al.  Linear programming and extensions , 1981 .

[9]  Jie Feng,et al.  3E (energy, environmental, and economy) evaluation and assessment to an innovative dual-gas polygeneration system , 2014 .

[10]  Evgueniy Entchev,et al.  Energy and cost analyses of a hybrid renewable microgeneration system serving multiple residential and small office buildings , 2014 .

[11]  R. Lahdelma,et al.  OPTIMAL OPERATION OF COMBINED HEAT AND POWER BASED POWER SYSTEMS IN LIBERALIZED POWER MARKETS , 2011 .

[12]  Saffa Riffat,et al.  Tri-generation systems: Energy policies, prime movers, cooling technologies, configurations and operation strategies , 2014 .

[13]  C. W. Chan,et al.  A review of chemical heat pumps, thermodynamic cycles and thermal energy storage technologies for low grade heat utilisation , 2013 .

[14]  Morten Boje Blarke,et al.  Large-scale heat pumps in sustainable energy systems , 2007 .

[15]  G. Martinopoulos,et al.  European energy policy—A review , 2013 .

[16]  Moya Rivera Jose Antonio,et al.  Heat and Cooling Demand and Market Perspective , 2012 .

[17]  Reinhard Madlener,et al.  Socio-economic drivers of large urban biomass cogeneration: Sustainable energy supply for Austria's capital Vienna , 2007 .

[18]  Pierluigi Mancarella,et al.  Distributed multi-generation: A comprehensive view , 2009 .

[19]  Risto Lahdelma,et al.  Poly-Generation Planning: Useful Lessons from Models and Decision Support Tools , 2009 .

[20]  Risto Lahdelma,et al.  Efficient algorithms for combined heat and power production planning under the deregulated electricity market , 2007, Eur. J. Oper. Res..

[21]  Alain Bui,et al.  Smart Grid and Optimization , 2013 .

[22]  Wei Zhao,et al.  Coal chemical industry and its sustainable development in China , 2010 .

[23]  M. O'Malley,et al.  Unit Commitment for Systems With Significant Wind Penetration , 2009, IEEE Transactions on Power Systems.

[24]  R. Kehlhofer,et al.  Combined-cycle gas and steam turbine power plants. 2. edition , 1991 .

[25]  Risto Lahdelma,et al.  An efficient linear model and optimisation algorithm for multi-site combined heat and power production , 2006, Eur. J. Oper. Res..

[26]  Kari Alanne,et al.  Distributed energy generation and sustainable development , 2006 .

[27]  Javier Royo,et al.  Assessment of high temperature organic Rankine cycle engine for polygeneration with MED desalination: A preliminary approach , 2012 .

[28]  Zheng Li,et al.  Strategic thinking on IGCC development in China , 2008 .

[29]  Poul Erik Morthorst,et al.  How to promote renewable energy systems successfully and effectively , 2004 .

[30]  Pierluigi Mancarella,et al.  Matrix modelling of small-scale trigeneration systems and application to operational optimization , 2009 .

[31]  S. Iniyan,et al.  A review of renewable energy based cogeneration technologies , 2011 .

[32]  M. Behrangrad A review of demand side management business models in the electricity market , 2015 .

[33]  G. Andersson,et al.  Optimal Power Flow of Multiple Energy Carriers , 2007, IEEE Transactions on Power Systems.

[34]  Risto Lahdelma,et al.  An efficient envelope-based Branch and Bound algorithm for non-convex combined heat and power production planning , 2007, Eur. J. Oper. Res..

[35]  B.F. Wollenberg,et al.  Toward a smart grid: power delivery for the 21st century , 2005, IEEE Power and Energy Magazine.

[36]  Jukka Paatero,et al.  Hybrid application of biogas and solar resources to fulfill household energy needs: A potentially viable option in rural areas of developing countries , 2014 .

[37]  Yang Chen,et al.  Optimal Design and Operation of Energy Polygeneration Systems by , 2012 .

[38]  Pierluigi Mancarella,et al.  Techno-economic and environmental modelling and optimization of flexible distributed multi-generation options , 2014 .

[39]  Reinhard Madlener,et al.  Combined Heat and Power Generation in Liberalised Markets and a Carbon-Constrained World , 2003 .

[40]  Alberto Traverso,et al.  Real-time tool for management of smart polygeneration grids including thermal energy storage , 2014 .

[41]  Stefano Bracco,et al.  A dynamic optimization-based architecture for polygeneration microgrids with tri-generation, renewables, storage systems and electrical vehicles , 2015 .

[42]  Fabricio I. Salgado,et al.  Short-term operation planning on cogeneration systems : A survey , 2008 .

[43]  Yang Shi,et al.  Combined cooling, heating and power systems: A survey , 2014 .

[44]  George Papadakis,et al.  Low­grade heat conversion into power using organic Rankine cycles - A review of various applications , 2011 .

[45]  J. Paatero,et al.  Extension of energy crops on surplus agricultural lands: A potentially viable option in developing countries while fossil fuel reserves are diminishing , 2014 .

[46]  Stefano Bracco,et al.  The University of Genoa smart polygeneration microgrid test-bed facility: The overall system, the technologies and the research challenges , 2013 .

[47]  Reinhard Madlener,et al.  Sustainable energy development in Austria until 2020: Insights from applying the integrated model “e3.at” , 2011, Energy policy.

[48]  Peter B. Luh,et al.  Grid Integration of Intermittent Wind Generation: A Markovian Approach , 2014, IEEE Transactions on Smart Grid.

[49]  Aqeel Ahmed Bazmi,et al.  Sustainable energy systems: Role of optimization modeling techniques in power generation and supply—A review , 2011 .

[50]  Rita Puig,et al.  Review of micro- and small-scale technologies to produce electricity and heat from Mediterranean forests׳ wood chips , 2015 .

[51]  Risto Lahdelma,et al.  An efficient linear programming model and optimization algorithm for trigeneration , 2005 .

[52]  Alistair B. Sproul,et al.  Optimisation of energy management in commercial buildings with weather forecasting inputs: A review , 2014 .

[53]  Pierluigi Mancarella,et al.  Trigeneration Primary Energy Saving Evaluation for Energy Planning and Policy Development , 2007 .

[54]  A. Azapagic,et al.  Environmental implications of decarbonising electricity supply in large economies: The case of Mexico , 2014 .

[55]  Saffa Riffat,et al.  Development of small-scale and micro-scale biomass-fuelled CHP systems – A literature review , 2009 .

[56]  Dimitrios I. Gerogiorgis,et al.  Modeling and optimization of polygeneration energy systems , 2007 .

[57]  Torsten Fransson,et al.  Small-scale biomass CHP plants in Sweden and Finland , 2011 .

[58]  Antonio J. Conejo,et al.  Decomposition Techniques in Mathematical Programming: Engineering and Science Applications , 2006 .

[59]  Risto Lahdelma,et al.  Non-convex power plant modelling in energy optimisation , 2006, Eur. J. Oper. Res..