22 W average power multiterawatt femtosecond laser chain enabling 1019 W/cm2 at 100 Hz

[1]  P. Winkler,et al.  Wavefront Degradation of a 200 TW Laser from Heat-Induced Deformation of In-Vacuum Compressor Gratings , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[2]  M. Sentis,et al.  22 W average power multiterawatt femtosecond laser chain enabling 1019 W/cm2 at 100 Hz , 2018 .

[3]  M. Sentis,et al.  Impact of the pulse contrast ratio on molybdenum Kα generation by ultrahigh intensity femtosecond laser solid interaction , 2018, Scientific Reports.

[4]  K. Osvay,et al.  Liquid-cooled Ti:Sapphire thin disk amplifiers for high average power 100-TW systems. , 2017, Optics express.

[5]  Andrejus Michailovas,et al.  53 W average power CEP-stabilized OPCPA system delivering 5.5 TW few cycle pulses at 1 kHz repetition rate. , 2017, Optics express.

[6]  Hoang T. Nguyen,et al.  Active cooling of pulse compression diffraction gratings for high energy, high average power ultrafast lasers. , 2016, Optics express.

[7]  Tino Eidam,et al.  Energetic sub-2-cycle laser with 216  W average power. , 2016, Optics letters.

[8]  P. Sikocinski,et al.  Time-resolved measurement of thermally induced aberrations in a cryogenically cooled Yb:YAG slab with a wavefront sensor , 2016 .

[9]  William S. Brocklesby,et al.  Progress in high average power ultrafast lasers , 2015 .

[10]  Jiangfeng Wang,et al.  Research and control of thermal effect in a helium gas-cooled multislab Nd:glass laser amplifier , 2015, International Conference on Optical Instruments and Technology.

[11]  Xiaojun Xu,et al.  Thermal distortion real-time detection and correction of a high-power laser beam-splitter mirror based on double Shack-Hartmann wavefront sensors , 2015, Europe Optics + Optoelectronics.

[12]  Ferenc Krausz,et al.  Third-Generation Femtosecond Technology , 2015, CLEO 2015.

[13]  Tomas Mocek,et al.  Time-resolved deformation measurement of Yb:YAG thin disk using wavefront sensor , 2015, Photonics West - Lasers and Applications in Science and Engineering.

[14]  Helder Crespo,et al.  Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers , 2014, 1802.00599.

[15]  Xavier Levecq,et al.  Diffraction limited focal spot in the interaction chamber using phase retrieval adaptive optics , 2014, Photonics West - Lasers and Applications in Science and Engineering.

[16]  Tino Eidam,et al.  Energy scaling of femtosecond amplifiers using actively controlled divided-pulse amplification. , 2014, Optics letters.

[17]  Tino Eidam,et al.  A concept for multiterawatt fibre lasers based on coherent pulse stacking in passive cavities , 2014, Light: Science & Applications.

[18]  Martin Richardson,et al.  Concepts, performance review, and prospects of table-top, few-cycle optical parametric chirped-pulse amplification , 2013 .

[19]  Antonio Lucianetti,et al.  Optimization of Wavefront Distortions and Thermal-Stress Induced Birefringence in a Cryogenically-Cooled Multislab Laser Amplifier , 2013, IEEE Journal of Quantum Electronics.

[20]  Jens Limpert,et al.  The future is fibre accelerators , 2013, Nature Photonics.

[21]  Marco Borghesi,et al.  Ion acceleration by superintense laser-plasma interaction , 2013, 1302.1775.

[22]  G. Lambert,et al.  Femtosecond x rays from laser-plasma accelerators , 2013, 1301.5066.

[23]  J. Kieffer,et al.  Pedestal cleaning for high laser pulse contrast ratio with a 100 TW class laser system. , 2011, Optics Express.

[24]  D. Malacara-Hernández,et al.  PRINCIPLES OF OPTICS , 2011 .

[25]  Eric Esarey,et al.  Physics of laser-driven plasma-based electron accelerators , 2009 .

[26]  D. Kaplan,et al.  Self-referenced spectral interferometry , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[27]  J. Kieffer,et al.  Investigation of the thermally induced laser beam distortion associated with vacuum compressor gratings in high energy and high average power femtosecond laser systems. , 2009, Optics express.

[28]  Jens Limpert,et al.  The impact of spectral modulations on the contrast of pulses of nonlinear chirped-pulse amplification systems. , 2008, Optics express.

[29]  S Yu Tenyakov,et al.  Contrast degradation in a chirped-pulse amplifier due to generation of prepulses by postpulses. , 2008, Optics express.

[30]  Pierre Tournois,et al.  Intracavity acousto-optic programmable gain control for ultra-wide-band regenerative amplifiers , 2006 .

[31]  S. V. Bulanov,et al.  Optics in the relativistic regime , 2006 .

[32]  Sterling Backus,et al.  11-W average power Ti:sapphire amplifier system using downchirped pulse amplification. , 2004, Optics letters.

[33]  Ph. A. Martin,et al.  Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulses. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Taisuke Miura,et al.  Seven-terawatt Ti:sapphire laser system operating at 50 Hz with high beam quality for laser Compton femtosecond X-ray generation , 2003 .

[35]  M M Murnane,et al.  High-efficiency, single-stage 7-kHz high-average-power ultrafast laser system. , 2001, Optics letters.

[36]  V Laude,et al.  Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping. , 2000, Optics letters.

[37]  Henry C. Kapteyn,et al.  Design and implementation of a TW-class high-average power laser system , 1998 .

[38]  Gerard Mourou,et al.  Suppression of the amplified spontaneous emission in chirped-pulse-amplification lasers by clean high-energy seed-pulse injection , 1998 .

[39]  L. DiMauro,et al.  Aberration-free stretcher design for ultrashort-pulse amplification. , 1995, Optics letters.

[40]  J. Y. Wang,et al.  Wave-front interpretation with Zernike polynomials. , 1980, Applied optics.