USACv20: robust essential, fundamental and homography matrix estimation

We review the most recent RANSAC-like hypothesize-and-verify robust estimators. The best performing ones are combined to create a state-ofthe-art version of the Universal Sample Consensus (USAC) algorithm. A recent objective is to implement a modular and optimized framework, making future RANSAC modules easy to be included. The proposed method, USACv20, is tested on eight publicly available real-world datasets, estimating homographies, fundamental and essential matrices. On average, USACv20 leads to the most geometrically accurate models and it is the fastest in comparison to the state-of-the-art robust estimators. All reported properties improved performance of original USAC algorithm significantly. The pipeline will be made available after publication.

[1]  C. Strecha,et al.  Wide-baseline stereo from multiple views: A probabilistic account , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[2]  Yuri Boykov,et al.  Energy-Based Geometric Multi-model Fitting , 2012, International Journal of Computer Vision.

[3]  Jiri Matas,et al.  Epipolar geometry estimation via RANSAC benefits from the oriented epipolar constraint , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[4]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[5]  Sven J. Dickinson,et al.  Incremental model-based estimation using geometric constraints , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Jiri Matas,et al.  Fixing the Locally Optimized RANSAC , 2012, BMVC.

[7]  Jiri Matas,et al.  MODS: Fast and robust method for two-view matching , 2015, Comput. Vis. Image Underst..

[8]  Jiri Matas,et al.  Progressive NAPSAC: sampling from gradually growing neighborhoods , 2019, ArXiv.

[9]  Andrew Zisserman,et al.  Robust Detection of Degenerate Configurations while Estimating the Fundamental Matrix , 1998, Comput. Vis. Image Underst..

[10]  Richard Szeliski,et al.  Bundle Adjustment in the Large , 2010, ECCV.

[11]  J. M. M. Montiel,et al.  ORB-SLAM: A Versatile and Accurate Monocular SLAM System , 2015, IEEE Transactions on Robotics.

[12]  Daniel Cremers,et al.  LSD-SLAM: Large-Scale Direct Monocular SLAM , 2014, ECCV.

[13]  Slawomir J. Nasuto,et al.  NAPSAC: High Noise, High Dimensional Robust Estimation - it's in the Bag , 2002, BMVC.

[14]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[15]  Jiri Matas,et al.  MAGSAC: Marginalizing Sample Consensus , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  Tat-Jun Chin,et al.  Interacting Geometric Priors For Robust Multimodel Fitting , 2014, IEEE Transactions on Image Processing.

[17]  David Nistér,et al.  An efficient solution to the five-point relative pose problem , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[18]  B. S. Manjunath,et al.  The multiRANSAC algorithm and its application to detect planar homographies , 2005, IEEE International Conference on Image Processing 2005.

[19]  Andrew Zisserman,et al.  Wide baseline stereo matching , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[20]  Noah Snavely,et al.  Robust Global Translations with 1DSfM , 2014, ECCV.

[21]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[22]  Elsevier Sdol,et al.  Journal of Visual Communication and Image Representation , 2009 .

[23]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  David Nistér,et al.  An efficient solution to the five-point relative pose problem , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Steven M. Seitz,et al.  Photo tourism: exploring photo collections in 3D , 2006, ACM Trans. Graph..

[26]  Andrew Zisserman,et al.  MLESAC: A New Robust Estimator with Application to Estimating Image Geometry , 2000, Comput. Vis. Image Underst..

[27]  Jiri Matas,et al.  Optimal Randomized RANSAC , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Philip H. S. Torr,et al.  Outlier detection and motion segmentation , 1993, Other Conferences.

[29]  Jiri Matas,et al.  Graph-Cut RANSAC , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[30]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[31]  Richard Szeliski,et al.  Modeling the World from Internet Photo Collections , 2008, International Journal of Computer Vision.

[32]  Philip H. S. Torr,et al.  Bayesian Model Estimation and Selection for Epipolar Geometry and Generic Manifold Fitting , 2002, International Journal of Computer Vision.

[33]  Jiri Matas,et al.  Locally Optimized RANSAC , 2003, DAGM-Symposium.

[34]  Jan-Michael Frahm,et al.  USAC: A Universal Framework for Random Sample Consensus , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Jiri Matas,et al.  Randomized RANSAC with sequential probability ratio test , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[36]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[37]  Ji Zhao,et al.  An Evaluation of Feature Matchers for Fundamental Matrix Estimation , 2019, BMVC.

[38]  Jiri Matas,et al.  Two-view geometry estimation unaffected by a dominant plane , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[39]  Wolfram Burgard,et al.  A benchmark for the evaluation of RGB-D SLAM systems , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.